首页 | 本学科首页   官方微博 | 高级检索  
     

复对称矩阵的最优理论研究
引用本文:陈云坤. 复对称矩阵的最优理论研究[J]. 贵州科学, 2011, 29(1): 26-28
作者姓名:陈云坤
作者单位:贵州师范大学,数学与计算机科学学院,贵阳,550001
摘    要:J.Daneiger在复对称矩阵的极小极大理论方面做了较深刻的研究,本文在J.Daneiger(2006)的研究基础上,对复对称矩阵的最优问题进行研究,给出了一些主要定理、推论及其详细证明过程.

关 键 词:复对称矩阵  奇异值  酉矩阵  最优值

Research on Optimal Theory of Complex Symmetric Matrix
CHEN Yun-kun. Research on Optimal Theory of Complex Symmetric Matrix[J]. Guizhou Science, 2011, 29(1): 26-28
Authors:CHEN Yun-kun
Affiliation:CHEN Yun-kun(School of Mathematics and Computer Science,Guizhou Normal University,Guiyang,Guizhou 550001,China)
Abstract:J.Danciger has made a profound research on the maximal and minimal theories of complex symmetric matrix.This paper researched the optimal issue of complex symmetric matrix based on A Min-max Theorem for Complex Symmetric Matrices of Danciger’s(see literature 1).Some primary theorems,deductions and the detailed testifying progress were given.
Keywords:complex symmetric matrix  singular value  unitary matrix  optimal value
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号