首页 | 本学科首页   官方微博 | 高级检索  
     

基于多目标融合及改进遗传算法的终端区进场协同排序
引用本文:向征,袁博轩,刘玥琳. 基于多目标融合及改进遗传算法的终端区进场协同排序[J]. 科学技术与工程, 2022, 22(29): 13104-13113
作者姓名:向征  袁博轩  刘玥琳
作者单位:中国民用航空飞行学院
基金项目:中国民用航空飞行学院科研项目(J2021-082);
摘    要:未来中国终端区将逐年递增,根据数据显示终端区内空域资源与飞行流量的增长不成正比,终端区内流量趋于饱和。为了有效提升终端区运行的效率,确保航空器在其空域的安全飞行,降低管制员的负荷以及公司的运行成本,从航空器延误、管制员负荷以及各机场资源平衡3个方向建立多机场终端区航空器进场协同排序模型。首先,通过对终端区范围界定,运行主要问题的研究以及空域结构的分析,了解终端区系统的相互关联因素;其次,通过对终端区进场航空器的线路、交叉点的单独分析,找到相应的共同点和影响较高的运行系统相关性因素、相关的约束以及主要的解决目标;最后,利用结合模拟退火算法(simulated annealing algorithm, SAA)的非支配排序遗传算法Ⅱ(non-dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)算法对该模型进行求解。结果表明:基于改进遗传算法对该模型求解后对比先到先服务模式以及未改进的遗传算法在效率上分别提高26.3%和53.2%。由此可见,所提出的模型能有效地提高航空器排序的效率。

关 键 词:多机场终端区  多目标优化  进场协同排序模型  先到先服务模式  模拟退火算法  NSGA-Ⅱ算法
收稿时间:2021-11-18
修稿时间:2022-07-07

Collaborative Sequencing of Arrival Flights in Terminal Area Based on Multi-Objective Fusion and Improved Genetic Algorithm
Xiang Zheng,Yuan Boxuan,Liu Yuelin. Collaborative Sequencing of Arrival Flights in Terminal Area Based on Multi-Objective Fusion and Improved Genetic Algorithm[J]. Science Technology and Engineering, 2022, 22(29): 13104-13113
Authors:Xiang Zheng  Yuan Boxuan  Liu Yuelin
Affiliation:Civil Aviation Flight University of China
Abstract:In the future,the number of the terminal airspace in China will increase year by year, according to the data, the airspace resources in the terminal area are not proportional to the growth of flight flow, and the flow in the terminal area tends to be saturated. In order to enhance the operation efficiency of terminal area more effectively, the safety of aircraft in its airspace is ensured, the load of controllers and the cost of company operation are reduced,A multi airport terminal area Aircraft Arrival collaborative sequencing model is established from three directions: aircraft delay, controller load and resource balance of each airport. Firstly, the interrelated factors of the terminal area system are obtained through the study of the scope of the terminal area, the main problems of operation and the analysis of the airspace structure; Then the corresponding commonalities, high impact operation system correlation factors, relevant constraints and main solution objectives are obtained through the separate analysis of the routes and intersections of aircraft entering the terminal area; Finally, the model is solved by NSGA-II algorithm combined with simulated annealing. The results show that the solution of the model based on the improved genetic algorithm is compared with the first come first serve model and the unmodified genetic algorithm, the efficiency is improved by 26.3% and 53.2% respectively. It can be seen that the efficiency of aircraft sequencing can be greatly improved through the proposed model.
Keywords:multi airport terminal area  multi-objective optimization  approach collaborative ranking model  FCFS rules  NSGA-II combined with simulated annealing
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号