首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度置信网络的齿轮箱智能诊断方法
引用本文:段礼祥,赵剑平,曲海涛,张德军,秦天飞. 基于深度置信网络的齿轮箱智能诊断方法[J]. 科学技术与工程, 2020, 20(27): 11099-11104
作者姓名:段礼祥  赵剑平  曲海涛  张德军  秦天飞
作者单位:中国石油大学(北京)安全与海洋工程学院,北京102249;中国石化胜利油田分公司地面工程维修中心,东营257000;中国石油塔里木油田分公司,库尔勒841000
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:针对油田现场强背景噪声干扰下,难以实现齿轮箱故障精确诊断的问题,提出基于深度置信网络(Deep Belief Network,DBN)的齿轮箱智能诊断方法。首先运用变分模态分解(Variational Mode Decomposition,VMD)对齿轮箱振动信号分别进行分解;然后依据互相关准则对小于阈值的模态运用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)进行降噪滤波处理,并对降噪后的信号进行重构;最后构造故障特征集,实现基于DBN的故障特征自适应挖掘与故障模式智能识别。对现场的齿轮箱故障诊断表明,本文提出的方法具有自适应性,能显著提高故障分类准确率,为保障油田设备安全可靠运行提供了依据。

关 键 词:齿轮箱  深度置信网络  变分模态分解  最大相关峭度解卷积  故障诊断
收稿时间:2019-11-14
修稿时间:2020-06-27

Gearbox Intelligent Diagnosis Method Based on Deep Belief Network
DUAN Li-xiang,ZHAO Jian-ping,QU Hai-tao,ZHANG De-jun,QIN Tian-fei. Gearbox Intelligent Diagnosis Method Based on Deep Belief Network[J]. Science Technology and Engineering, 2020, 20(27): 11099-11104
Authors:DUAN Li-xiang  ZHAO Jian-ping  QU Hai-tao  ZHANG De-jun  QIN Tian-fei
Affiliation:School of Safety and Ocean Engineering, China University of Petroleum
Abstract:Aiming at the difficulty to accurately extract the gearbox fault features under strong background noise in oilfield, an intelligent diagnosis method of gearbox faults based on deep belief network (DBN) was proposed. Firstly, the vibration signals of gearbox were decomposed by variational mode decomposition (VMD). Then, according to the cross-correlation criterion, the components smaller than the threshold were denoised and filtered by maximum correlation kurtosis deconvolution (MCKD), and the denoised signals were reconstructed. Finally, the fault feature sets were constructed to realize adaptive fault feature mining and intelligent fault pattern recognition based on DBN. The gearbox diagnosis in oilfield shows that the proposed method has self-adaptability, significantly improves the accuracy of fault classification, and provides a basis for ensuring the safe and reliable operation of oilfield equipments.
Keywords:gearbox  deep belief network  variational mode decomposition  maximum correlation kurtosis deconvolution  fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号