首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应神经网络的云资源预测模型
引用本文:王悦悦,谢晓兰,郭杨,覃承友,陈超泉. 基于自适应神经网络的云资源预测模型[J]. 科学技术与工程, 2021, 21(25): 10814-10819
作者姓名:王悦悦  谢晓兰  郭杨  覃承友  陈超泉
作者单位:桂林理工大学信息科学与工程学院,桂林541006
基金项目:国家自然科学基金资助项目;广西科技重大专项;广西重点研发项目
摘    要:为了避免容器云资源因资源供求不均衡而导致的资源利用率差等问题,需要对未来时刻的资源需求情况进行预测来进行更精准的调度和分配资源,因此,结合神经网络的高效学习能力与自适应调整的学习率,提出一种基于自适应神经网络的云资源预测模型.首先,融合卷积神经网络(convolutional neural network,CNN)和长...

关 键 词:长短期记忆网络  卷积神经网络  容器云  自适应学习率  资源预测
收稿时间:2021-03-12
修稿时间:2021-05-10

Cloud Resource Prediction Model Based on Adaptive Neural Network
Wang Yueyue,Xie Xiaolan,Guo Yang,Qin Chengyou,Chen Chaoquan. Cloud Resource Prediction Model Based on Adaptive Neural Network[J]. Science Technology and Engineering, 2021, 21(25): 10814-10819
Authors:Wang Yueyue  Xie Xiaolan  Guo Yang  Qin Chengyou  Chen Chaoquan
Affiliation:Guilin University of Technology
Abstract:In order to avoid the problem of poor utilization rate of container cloud resources due to the imbalance of resource supply and demand, it is necessary to forecast the resource demand in the future to schedule and allocate resources more accurately. Therefore, combined with the efficient learning ability of neural network and the adaptive learning rate, a cloud resource prediction model based on adaptive neural network is proposed. Firstly, the characteristics of historical data were mined by combining the characteristics of convolutional neural network (CNN) and long-term memory network (LSTM) to predict the future resource demand. Then the learning rate was adjusted adaptively according to the prediction of the model to improve the accuracy of model prediction. The test results with Microsoft Azure public dataset show that compared with CNN, LSTM and the neural network model without adaptive learning rate, the root mean square error decreases by 17.74%, 18.27% and 6% respectively, which proves the validity of the model.
Keywords:long and short-term memory network  convolutional neural network  container cloud  adaptive learning rate  resource prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号