首页 | 本学科首页   官方微博 | 高级检索  
     

基于相似性验证与子块排序的NSST域SAR图像去噪
引用本文:刘帅奇,扈琪,李喆,安彦玲,李鹏飞,赵杰. 基于相似性验证与子块排序的NSST域SAR图像去噪[J]. 北京理工大学学报, 2018, 38(7): 744-751. DOI: 10.15918/j.tbit1001-0645.2018.07.014
作者姓名:刘帅奇  扈琪  李喆  安彦玲  李鹏飞  赵杰
作者单位:河北大学电子信息工程学院,河北,保定071000;河北省机器视觉工程技术研究中心,河北,保定071000;河北省数字医疗工程重点实验室,河北,保定071000;陆军工程大学无人机工程系,河北,石家庄050003
基金项目:国家自然科学基金资助项目(61401308;61572063),河北省自然科学基金资助项目(F2016201142;F2016201187),河北省教育厅项目(QN2016085),河北大学研究生创新资助项目(X201710
摘    要:为了改进传统的非局部变换域合成孔径雷达(synthetic aperture radar,SAR)图像去噪算法不考虑子块关系的缺点,结合相似性验证与子块排序提出一种新的非下采样剪切波(non-subsampled shearlet transform,NSST)域SAR图像去噪算法.构造NSST域SAR图像相似块之间距离的密度分布;利用子块之间的相似性,去除相似性较低的子块;结合子块排序和最优一维滤波对SAR图像进行去噪.实验结果表明,与其他经典去噪算法相比,等效视数平均提升6.92,边缘保持指数更接近1,无参考质量评价指数平均降低2.51,能更好地保持图像边缘和纹理信息,改善图像的视觉效果. 

关 键 词:SAR图像去噪  非下采样剪切波变换  相似性验证  子块排序
收稿时间:2017-12-21

SAR Image Denoising Based on Similarity Validation and Patch Ordering in NSST Domain
LIU Shuai-qi,HU Qi,LI Zhe,AN Yan-ling,LI Peng-fei and ZHAO Jie. SAR Image Denoising Based on Similarity Validation and Patch Ordering in NSST Domain[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2018, 38(7): 744-751. DOI: 10.15918/j.tbit1001-0645.2018.07.014
Authors:LIU Shuai-qi  HU Qi  LI Zhe  AN Yan-ling  LI Peng-fei  ZHAO Jie
Affiliation:1. College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071000, China;2. Machine Vision Engineering Research Center of Hebei Province, Baoding, Hebei 071000, China;3. Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding, Hebei 071000, China;4. Department of UAV Engineering, Army Engineering University, Shijiazhuang, Hebei 050003, China
Abstract:In order to overcome the shortcoming of traditional synthetic aperture radar(SAR)image denoising algorithm in non-local transform domain without considering the patch relationship,a new SAR image denoising algorithm in non-subsampled shearlet transform(NSST)domain was proposed based on similarity validation and patch ordering.Firstly,the density distribution of distances between similar patches of SAR image in the NSST domain was constructed.Then,the patches with lower similarity were removed according to the similarity between the patches.Finally,SAR image was denoised by combining the patch ordering and the optimal one-dimensional filter.The experimental results show that,compared with other transform domain algorithms,the equivalent numbers of looks in this algorithm can increase by 6.92 on average,and the edge preservation index is close to 1.And the unassisted measure of quality can reduce by 2.51 on average.The algorithm can better maintain the image edge and texture information,and improve the visual effect of the image.
Keywords:SAR image denoising  non-subsampling shearlet transform  similarity validation  patch ordering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号