首页 | 本学科首页   官方微博 | 高级检索  
     

一种时序数据多项式拟合加速方法
引用本文:计卫星,张露露,陈娟,邹天刚,罗辉,郭静,高志伟. 一种时序数据多项式拟合加速方法[J]. 北京理工大学学报, 2018, 38(5): 519-524. DOI: 10.15918/j.tbit1001-0645.2018.05.013
作者姓名:计卫星  张露露  陈娟  邹天刚  罗辉  郭静  高志伟
作者单位:北京理工大学 计算机学院,北京,100081;中国兵器工业第 201 研究所,北京,100072
基金项目:国家自然科学基金资助项目(61327806,61501028)
摘    要:考虑到时序数据自身特点,特别是针对周期采样的时序数据,本文提出一种多项式拟合加速方法,讨论了平均分段和非平均分段两种情况下时序数据多项式拟合方法,通过重复利用部分矩阵的中间计算结果,大幅提高了多项式拟合的计算速度.实验结果表明,对于周期采样数据,该方法在平均分段和非平均分段时最多可分别获得约28倍和17倍计算加速. 

关 键 词:时序数据  数据压缩  多项式拟合  最小二乘法
收稿时间:2016-09-02

Polynomial Fitting Acceleration Method Based on Time-Series Segmentation
JI Wei-xing,ZHANG Lu-lu,CHEN Juan,ZOU Tian-gang,LUO Hui,GUO Jing and GAO Zhi-wei. Polynomial Fitting Acceleration Method Based on Time-Series Segmentation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2018, 38(5): 519-524. DOI: 10.15918/j.tbit1001-0645.2018.05.013
Authors:JI Wei-xing  ZHANG Lu-lu  CHEN Juan  ZOU Tian-gang  LUO Hui  GUO Jing  GAO Zhi-wei
Affiliation:1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2. China North Vehicle Research Institute, Beijing 100072, China
Abstract:Polynomial fitting is one of the most important approaches of time-series data compres-sion,and the calculation process involves multiple matrix multiplication and inversion,which lead to high computational complexity.Due to the large number of time series instances,the incoming data need to be high performance and real-time processing.Considering the characteristics of time-series data,especially for the periodic sampled time series data,a polynomial fitting acceler-ation method was proposed.Reusing the intermediate calculation results,both of polynomial fit-ting methods with fixed and variable segment length were taken to speed up the polynomial fitting of time-series data.Experimental results show that the proposed method can achieve a speedup of 28x and 17x for fixed length segmentation and variable segmentation respectively.
Keywords:time-series  data compression  polynomial fitting  least square method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号