首页 | 本学科首页   官方微博 | 高级检索  
     

基于信赖域技术和修正拟牛顿方程的非单调超记忆梯度算法
引用本文:宫恩龙,陈双双,孙清滢,陈颖梅. 基于信赖域技术和修正拟牛顿方程的非单调超记忆梯度算法[J]. 中国石油大学学报(自然科学版), 2013, 0(2): 191-196
作者姓名:宫恩龙  陈双双  孙清滢  陈颖梅
作者单位:青岛酒店管理职业技术学院;中国石油大学理学院
基金项目:国家自然科学基金项目(61201455);中央高校基本科研业务费专项(10CX04044A;11 CX06087A)
摘    要:基于信赖域技术和修正拟牛顿方程,结合Neng-Zhu Gu非单调策略,设计新的求解无约束最优化问题的非单调超记忆梯度算法,分析算法的收敛性和收敛速度。新算法每次迭代节约了矩阵的存储量和计算量,算法稳定,适于求解大规模问题。数值试验结果表明新算法是有效的。

关 键 词:超记忆梯度算法  非单调规则  收敛性  收敛速度  数值试验
收稿时间:2012-09-05

A non-monotone super-memory gradient method based on trust region technique and modified quasi-Newton equation
GONG En-long,CHEN Shuang-shuang,SUN Qing-ying and CHEN Ying-mei. A non-monotone super-memory gradient method based on trust region technique and modified quasi-Newton equation[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2013, 0(2): 191-196
Authors:GONG En-long  CHEN Shuang-shuang  SUN Qing-ying  CHEN Ying-mei
Affiliation:1.Qingdao Hotel Management College,Qingdao 266100,China; 2.College of Science in China University of Petroleum,Qingdao 266580,China)
Abstract:Based on trust region technique and modified quasi-Newton equation, by combining with Neng-Zhu Gu non-monotone strategy, a new super-memory gradient method for unconstrained optimization problem was presented. The global and convergence properties of the new method were proved. It saves the storage and computation of some matrixes in its iteration, and is suitable for solving large scale optimization problems. The numerical results show that the new method is effective.
Keywords:super-memory gradient method   non-monotone step rule   convergence   convergence rate   numerical experiment
本文献已被 CNKI 等数据库收录!
点击此处可从《中国石油大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中国石油大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号