首页 | 本学科首页   官方微博 | 高级检索  
     

锂的城市矿产利用:前景、挑战及政策建议
引用本文:王翘楚,孙鑫,郝瀚,陈玮,陈伟强,郑绵平. 锂的城市矿产利用:前景、挑战及政策建议[J]. 科技导报(北京), 2020, 38(15): 6-15. DOI: 10.3981/j.issn.1000-7857.2020.15.001
作者姓名:王翘楚  孙鑫  郝瀚  陈玮  陈伟强  郑绵平
作者单位:1. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
2. 中国科学院海西创新研究院, 厦门 361021;
3. 清华大学汽车安全与节能国家重点实验室, 北京 100084;
4. 中国地质科学院盐湖与热水资源研究发展中心, 北京 100037
基金项目:中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC012);国家自然科学基金面上项目(41671523);国家自然科学基金国际(地区)合作与交流项目(71961147003)
摘    要:锂是重要的战略性资源,在电动汽车与能源存储技术中具有不可替代的作用。梳理了全球及中国锂资源储量、开采量、消费量的历史变化情况,并采用物质流分析方法,预测了2020—2080年全球锂资源供给量、需求量、报废量及城市矿产储量的变化趋势,阐明了开发锂城市矿产的必要性与紧迫性,并通过识别城市矿产利用的多重瓶颈从而提出了相应的应对策略。研究结果表明,未来全球锂资源的需求量、报废量及在用存量(城市矿产储量)将保持高速增长的态势,预计到2080年分别增长至约150万、115万、1840万t。其中,电池部门是主要的增长驱动力,电池产品的回收利用程度也将决定锂城市矿产的综合利用水平。假设未来无新增的经济可采储量且锂的回收利用率可以达到100%,锂的自然资源储量将在2080年左右消耗殆尽,将实现锂资源供给从天然矿产到城市矿产的巨大转变。而开发城市矿产将对降低中国锂进口依存度以及缓解原生锂开采的资源、能源、环境压力起到积极的促进作用。因此,亟需针对锂城市矿产利用的技术、经济和管理的多重瓶颈,制定相应的应对策略,保障未来锂城市矿产的高效、高质、高值、环保利用。

关 键 词:  关键金属  城市矿产  资源循环利用
收稿时间:2020-05-20

Urban mining of lithium: Prospects,challenges and policy recommendations
WANG Qiaochu,SUN Xin,HAO Han,CHEN Wei,CHEN Weiqiang,ZHENG Mianping. Urban mining of lithium: Prospects,challenges and policy recommendations[J]. Science & Technology Review, 2020, 38(15): 6-15. DOI: 10.3981/j.issn.1000-7857.2020.15.001
Authors:WANG Qiaochu  SUN Xin  HAO Han  CHEN Wei  CHEN Weiqiang  ZHENG Mianping
Affiliation:1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
2. Fujian Institute of Innovation, Chinese Academy of Sciences, Xiamen 361021, China;
3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
4. R&D Center for Saline Lakes and Epithermal Deposits, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract:Lithium is widely regarded as a critical and strategic metal that plays an indispensable role in electric vehicles and energy storage technology. This study first provides a dynamic and holistic view on the historical evolution of the global reserve, production, and consumption of lithium. Material flow analysis (MFA) is then used to model the trends of supply, demand, scrap generation, and in-use stocks of lithium from 2020 to 2080. Finally, prospects, challenges, and policy recommendations for urban mining of lithium are discussed. It is shown that, driven by the increasing demand in batteries, the global lithium demand, scraps generation, and in-use stocks will keep fast growing over the next 60 years, and will reach≈1.50, ≈1.15, and ≈18.40 million tons, respectively by 2080. If no new recoverable reserves are found and if lithium recycling rate reaches 100%, then lithium natural reserves would be exhausted in 2080, shifting the future lithium supply from natural minerals to urban minerals. Hence, it is important and urgent to explore the urban mines of lithium, which will have positive influences on trade, resource, energy, and environment. However, there are still many bottlenecks in terms of recycling technologies, economic feasibility, and waste management system to be solved so as to ensure highly efficient and environmental utilization of urban mining of lithium. Several policy recommendations are thus provided.
Keywords:lithium  critical metal  urban mining  resource recycling  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科技导报(北京)》浏览原始摘要信息
点击此处可从《科技导报(北京)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号