首页 | 本学科首页   官方微博 | 高级检索  
     

关于具有限时滞Liénard方程周期解的存在性
作者姓名:魏俊杰  黄启昌
作者单位:东北师范大学数学系!长春130024
摘    要:关于具有限时滞的Liénard方程x(t) f(x(t))x(t) g(x(t-r))=0 (0.1)的周期解的存在性的研究已有很多,但多数对g(x)都假设x∈R{0}时X·g(x)>0.该条件对某些实际背景很强的方程是不成立的.如向日葵方程a(t) (a/r)a(t) (b/r)sina(t-r)=0就不满足上述条件.关于方程(0.1)的周期解的研究可参阅文献[2~4]及其参考文献.本文的目的在于以滞量r为参数,在减弱条件x·g(x)>0的基础上,给出保证方程(0.1)存在非平凡周期解的充分条件1 零解的稳定性及Hopf分支对方程(0.l),假设r>0为常数f,g∈C~2且g(0)=0.记f(0)=m,g’(0)=n,且设m>0,n>0.令x=y,则方程(0.1)化成等价系统

关 键 词:时滞  Li(?)nard方程  周期解  分支
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号