首页 | 本学科首页   官方微博 | 高级检索  
     检索      

When and how did plate tectonics begin? Theoretical and empirical considerations
作者姓名:R.  J.  STERN
作者单位:Geosciences Department
基金项目:Supported by the US National Science Foundation (Grant No. 0405651 )
摘    要:Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipation in the bending lithosphere and viscous mantle. Plate tectonics is an unusual way for a silicate planet to lose heat, as it exists on only one of the large five silicate bodies in the inner solar system. It is not known when this mode of tectonic activity and heat loss began on Earth. All silicate planets probably experienced a short-lived magma ocean stage. After this solidified, stagnant lid behavior is the common mode of planetary heat loss, with interior heat being lost by delamination and “hot spot” volcanism and shallow intrusions. Decompression melting in the hotter early Earth generated a different lithosphere than today, with thicker oceanic crust and thinner mantle lithosphere; such lithosphere would take much longer than at present to become negatively buoyant, suggesting that plate tectonics on the early Earth occurred sporadically if at all. Plate tectonics became sustainable (the modern style) when Earth cooled sufficiently that decompression melting beneath spreading ridges made thin oceanic crust, allowing oceanic lithosphere to become negatively buoyant after a few tens of millions of years. Ultimately the question of when plate tectonics began must be answered by informa- tion retrieved from the geologic record. Criteria for the operation of plate tectonics includes ophiolites, blueschist and ultra-high pressure metamorphic belts, eclogites, passive margins, transform faults, paleomagnetic demonstration of different motions of different cratons, and the presence of diagnostic geochemical and isotopic indicators in igneous rocks. This record must be interpreted individually; I interpret the record to indicate a progression of tectonic styles from active Archean tectonics and magmatism to something similar to plate tectonics at ~1.9 Ga to sustained, modern style plate tectonics with deep subduction——and powerful slab pull——beginning in Neoproterozoic time.

关 键 词:板块构造  形成时间  形成机制  俯冲  前寒武纪  地球动力学  岩浆作用
收稿时间:25 September 2006
修稿时间:2006-09-25

When and how did plate tectonics begin? Theoretical and empirical considerations
R. J. STERN.When and how did plate tectonics begin? Theoretical and empirical considerations[J].Chinese Science Bulletin,2007,52(5):577-591.
Authors:R J Stern
Institution:(1) Geosciences Department, University of Texas at Dallas, Box 830688, Richardson, TX 75083-0688, USA
Abstract:Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipation in the bending lithosphere and viscous mantle. Plate tectonics is an unusual way for a silicate planet to lose heat, as it exists on only one of the large five silicate bodies in the inner solar system. It is not known when this mode of tectonic activity and heat loss began on Earth. All silicate planets probably experienced a short-lived magma ocean stage. After this solidified, stagnant lid behavior is the common mode of planetary heat loss, with interior heat being lost by delamination and “hot spot” volcanism and shallow intrusions. Decompression melting in the hotter early Earth generated a different lithosphere than today, with thicker oceanic crust and thinner mantle lithosphere; such lithosphere would take much longer than at present to become negatively buoyant, suggesting that plate tectonics on the early Earth occurred sporadically if at all. Plate tectonics became sustainable (the modern style) when Earth cooled sufficiently that decompression melting beneath spreading ridges made thin oceanic crust, allowing oceanic lithosphere to become negatively buoyant after a few tens of millions of years. Ultimately the question of when plate tectonics began must be answered by information retrieved from the geologic record. Criteria for the operation of plate tectonics includes ophiolites, blueschist and ultra-high pressure metamorphic belts, eclogites, passive margins, transform faults, paleomagnetic demonstration of different motions of different cratons, and the presence of diagnostic geochemical and isotopic indicators in igneous rocks. This record must be interpreted individually; I interpret the record to indicate a progression of tectonic styles from active Archean tectonics and magmatism to something similar to plate tectonics at ∼1.9 Ga to sustained, modern style plate tectonics with deep subduction—and powerful slab pull—beginning in Neoproterozoic time. Supported by the US National Science Foundation (Grant No. 0405651)
Keywords:Plate tectonics  subduction  Precambrian  geodynamics
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号