首页 | 本学科首页   官方微博 | 高级检索  
     


Incremental frequent tree-structured pattern mining from semi-structured data
Authors:Chen Enhong  Lin Le  Wu Gongqing  Wang Shu
Abstract:The paper studies the problem of incremental pattern mining from semi-structrued data. When a new dataset is added into the original dataset, it is difficult for existing pattern mining algorithms to incrementally update the mined results. To solve the problem, an incremental pattern mining algorithm based on the rightmost expansion technique is proposed here to improve the mining performance by utilizing the original mining results and information obtained in the previous mining process. To improve the efficiency, the algorithm adopts a pruning technique by using the frequent pattern expansion forest obtained in mining processes. Comparative experiments with different volume of initial datasets, incremental datasets and different minimum support thresholds demonstrate that the algorithm has a great improvement in the efficiency compared with that of non-incremental pattern mining algorithm.
Keywords:semi-structured data   labeled ordered tree   tree-structured pattern   incremental pattern mining
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号