首页 | 本学科首页   官方微博 | 高级检索  
     

用于精确定位的最佳匹配区选择分形法
引用本文:李俊,杨新,朱菊华,施鹏飞. 用于精确定位的最佳匹配区选择分形法[J]. 上海交通大学学报, 2001, 35(2): 305-308
作者姓名:李俊  杨新  朱菊华  施鹏飞
作者单位:上海交通大学图像处理与模式识别研究所,
基金项目:国家自然科学基金资助项目(60072026)
摘    要:图像中任意点局部邻域的分形维数越大,该领域图像数据的相关性越小,相关匹配搜索时定位该区域就越容易。由此提出了利用分形维数作为分离参数,在基准地图上选择最佳匹配区的方法。用相关法对选出的最匹配区验证表明,分形方法比传统的相关方法在选择最佳匹配区时,定位精度更高,计算更快。

关 键 词:地形匹配 相关匹配算法 分形 最佳匹配区 机器人 定位
文章编号:1006-2467(2001)02-0305-04
修稿时间:2000-01-07

Selection of SuitableMatching Area by Fractal Based Approach for High Precision Location
LI Jun,YANG Xin,ZHU Ju-hua,SHI Peng-fei. Selection of SuitableMatching Area by Fractal Based Approach for High Precision Location[J]. Journal of Shanghai Jiaotong University, 2001, 35(2): 305-308
Authors:LI Jun  YANG Xin  ZHU Ju-hua  SHI Peng-fei
Abstract:In the scene matching based robot or flight vehicle navigation system, the pre loaded reference images are compared with the real time acquisition images by correlation method for position location. And it is important to choose most distinguishable scenes as the suitable matching area (SMA) for high precision location. This paper addressed the close relation between the fractal dimension (FD) and the correlate coefficient of the matched image, that is, the greater the FD is, the less relative the image data. Thus, it suggested a method based on the FD of the image to select the SMA from the reference image, which is critical for navigation. The experiments prove that the proposed method not only results in accurate and reliable extraction of the SMA from the reference images, but also shows computational efficiency.
Keywords:terrain navigation  correlated matching  fractal  suitable matching area
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号