首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct ligand-receptor complex interaction controls Brassica self-incompatibility
Authors:Takayama S  Shimosato H  Shiba H  Funato M  Che F S  Watanabe M  Iwano M  Isogai A
Institution:Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.
Abstract:Many higher plants have evolved self-incompatibility mechanisms to prevent self-fertilization. In Brassica self-incompatibility, recognition between pollen and the stigma is controlled by the S locus, which contains three highly polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also called S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma, and SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SP11 is localized in the pollen coat. It is thought that, during self-pollination, SP11 is secreted from the pollen coat and interacts with its cognate SRK in the papilla cell of the stigma to elicit the self-incompatibility response. SLG is a secreted stigma protein that is highly homologous to the SRK extracellular domain. Although it is not required for S-haplotype specificity of the stigma, SLG enhances the self-incompatibility response; however, how this is accomplished remains controversial. Here we show that a single form of SP11 of the S8 haplotype (S8-SP11) stabilized with four intramolecular disulphide bonds specifically binds the stigma membrane of the S8 haplotype to induce autophosphorylation of SRK8, and that SRK8 and SLG8 together form a high-affinity receptor complex for S8-SP11 on the stigma membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号