首页 | 本学科首页   官方微博 | 高级检索  
     

一种稀疏图正则化的非负低秩矩阵分解算法
引用本文:刘国庆,卢桂馥,张强. 一种稀疏图正则化的非负低秩矩阵分解算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(2): 295-303
作者姓名:刘国庆  卢桂馥  张强
作者单位:安徽工程大学 计算机与信息学院,安徽 芜湖 241000,安徽工程大学 计算机与信息学院,安徽 芜湖 241000,安徽工程大学 计算机与信息学院,安徽 芜湖 241000
基金项目:国家自然科学基金(61572033)
摘    要:非负矩阵分解方法(non-negative matrix factorization,NMF)广泛应用于图像聚类、计算机视觉、信息检索等领域。但是,现有的NMF方法还存在一些不足之处:①NMF方法直接在高维原始图像数据集上计算它的低维表示,而实际上原始图像数据集的有效信息常常隐藏在它的低秩结构中;②NMF方法还存在对噪声敏感以及鲁棒性差的缺点。为了提高NMF算法的鲁棒性和可解释性,提出一种稀疏图正则化的非负低秩矩阵分解算法(sparse graph regularized non-negative low-rank matrix factorization,SGNLMF)。通过低秩约束和图正则化,SGNLMF算法同时利用了数据的几何信息和有效低秩结构;此外,SGNLMF算法还对基矩阵加以稀疏约束,使得其鲁棒性和可解释性均有一定的提升。还提出了一种求解SGNLMF的迭代算法,并从理论上分析了该求解算法的收敛性。通过在ORL和YaleB数据库上的实验结果表明SGNLMF算法的有效性。

关 键 词:非负矩阵分解算法(NMF)  鲁棒性  低秩约束  图正则化  稀疏约束
收稿时间:2018-12-11
修稿时间:2019-12-03

A non-negative low-rank matrix factorization algorithm for regularization of sparse graphs
LIU Guoqing,LU Guifu and ZHANG Qiang. A non-negative low-rank matrix factorization algorithm for regularization of sparse graphs[J]. Journal of Chongqing University of Posts and Telecommunications, 2020, 32(2): 295-303
Authors:LIU Guoqing  LU Guifu  ZHANG Qiang
Affiliation:School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, P. R. China,School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, P. R. China and School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, P. R. China
Abstract:NMF method is widely used in image clustering,computer vision, information retrieval and other fields. However, the existing NMF methods still have some shortcomings: firstly, the NMF method calculates its low-dimensional representation directly on the high-dimensional original image data set, but in fact the effective information of the original image data set is often hidden in its low-rank structure; secondly,the NMF method also has the shortcomings of being sensitive to noise and poor robustness.In order to improve the robustness and interpretability of the NMF algorithm,a sparse graph regularized non-negative low-rank matrix factorization (SGNLMF) is proposed.Through low rank constraint and graph regularization,SGNLMF algorithm utilizes both geometric information of data and effective low rank structure.In addition, SGNLMF algorithm also constrains the base matrix sparsely, which improves its robustness and interpretability to a certain extent. In addition, an iterative algorithm for solving SGNLMF is proposed and its convergence is theoretically analyzed. The experimental results on ORL and YaleB databases show the effectiveness of SGNLMF.
Keywords:Non-negative matrix factorization (NMF)   robustness   low rank constraint   graph regularized   sparse constraint
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号