首页 | 本学科首页   官方微博 | 高级检索  
     

基于SURE-LET和非张量积小波的遥感图像去噪
引用本文:曾武,徐正全,周龙. 基于SURE-LET和非张量积小波的遥感图像去噪[J]. 华中科技大学学报(自然科学版), 2012, 40(2): 97-100
作者姓名:曾武  徐正全  周龙
作者单位:1. 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079/武汉工业学院电气信息工程系,湖北武汉430023
2. 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079
3. 武汉工业学院电气信息工程系,湖北武汉,430023
基金项目:国家自然科学基金资助项目
摘    要:针对遥感图像中的高斯噪声,提出了基于SURE-LET和非张量积小波的去噪方法,主要包括图像在非张量积小波下的分解、各个子带在不同阈值函数下的处理以及它们最优的线性组合3个步骤.通过选择合适的非张量积小波滤波器参数,使无噪遥感图像和噪声在变换分解中得到的小波系数分离较好,去除噪声对应的小波系数时被去除的无噪图像对应的小波系数较少,从而取得更好的去噪效果.实验结果表明:此方法用于高斯噪声的遥感图像的去噪不仅速度很快,而且去噪效果优于传统基于张量积小波的SURE-LET方法.

关 键 词:遥感图像  高斯噪声  图像去噪  Stein无偏风险估计  非张量积小波

SURE-LET and non-tensor wavelets based remote sensing image denoising
Zeng Wu,Xu Zhengquan,Zhou Long. SURE-LET and non-tensor wavelets based remote sensing image denoising[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2012, 40(2): 97-100
Authors:Zeng Wu  Xu Zhengquan  Zhou Long
Affiliation:1 State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing, Wuhan University,Wuhan 430079,China;2 Department of Electric Information Engineering, Wuhan Polytechnic University,Wuhan 430023,China)
Abstract:A novel method to address the Gaussian noise of remote sensing image using non-tensor wavelet and SURE-LET was presented,which mainly contained three parts: the non-tensor wavelet decomposition,coefficients shrinkage of each subbands using the threshold functions,and estimating the optimal combination weights of the processed subbands.The non-tensor wavelet filters could be represented in the parametric form,by using appropriate,the non-tensor wavelet coefficients of noise free remote sensing images and noise were separated better than the traditional tensor wavelet coefficients.As a result,when using coefficient shrinkage technique to remove the noise,more noise free image coefficients could be reserved.Consequently,better denoising performance could be obtained.Experimental results show that by combining non-tensor wavelet and SURE-LET,the denoising procedure is very fast and denoising performance in sense of PSNR is prior to tensor wavelet and SURE-LET.
Keywords:remote sensing image  Gaussian noise  image denoising  Stein unbiased risk estimation  non-tensor wavelet
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号