首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏重构残差和随机森林的集成分类算法
摘    要:传统的基于稀疏表示的图像分类算法,通常根据稀疏重构后类残差向量的l2范数得到分类判决.在复杂情况下,各类残差向量l2的范数差别可能并不明显,从而导致分类器作出错误判决.提出了一种基于稀疏表示和随机森林的集成分类方法,通过稀疏表达字典对图像进行重构,提取各类残差图像的l2范数组成特征向量,并引入随机森林进行分类判决,有效地提升了算法基于类残差向量的判决能力.在手写数字数据库MNIST上的实验结果表明,在训练样本数较少的情况下,提出的基于稀疏表示和随机森林的集成学习分类方法与目前主流的SVM分类方法及随机森林方法进行比较,识别率有较为明显的提高,具有良好的鲁棒性.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号