摘 要: | FastMap是经典多维标度法(classical multidimensional scaling,CMDS)的一种快速算法,它包含一系列的投影.在每次投影中,两个相距较远的点被选为枢轴点,连接枢轴点得到一个枢轴;然后将各样本投影到枢轴上;最后,修改所有样本间的距离.FastMap的不足在于只能得到CMDS的近似解.对FastMap进行了深入分析,指出FastMap的本质就是把各样本投影到由枢轴确定的一组正交向量上.由于这组向量通常不同于样本集的主轴,使得FastMap只能得到CMDS的近似解;并指出FastMap算法的最大投影次数等于样本集的内在维数.在此理论分析的基础上,提出了一种改进的FastMap算法—iFastMap(improved FastMap)算法.通过对FastMap坐标进行主成分分析,iFastMap得到了与CMDS完全一致的解;此外,从样本集中选取一个内在维数等于整个样本集内在维数的子集,将枢轴点的选取限定在这个子集上,并在每次投影后只修改枢轴点与各样本间的距离,iFastMap的速度得到进一步提高.实验验证了iFastMap与CMDS解的完全一致性及其高效性.
|