首页 | 本学科首页   官方微博 | 高级检索  
     

基于多源数据的北京地区PM2.5暴露风险评估
引用本文:张西雅,扈海波. 基于多源数据的北京地区PM2.5暴露风险评估[J]. 北京大学学报(自然科学版), 2018, 54(5): 1103-1113. DOI: 10.13209/j.0479-8023.2018.031
作者姓名:张西雅  扈海波
作者单位:中国气象局北京城市气象研究所,北京,100089;中国气象局北京城市气象研究所,北京,100089
基金项目:北京市自然科学基金(8174066)、中国气象局气候变化专项(CCSF201717)和中央级公益性科研院所基本科研业务费专项基金(IUMKY201612)资助
摘    要:基于2014-2016年的北京地区PM2.5监测数据, 用空间插值法获得北京地区的PM2.5空间分布, 并基于DMSP/OLS夜间灯光数据, 模拟得到北京地区的人口密度空间分布。在此基础上, 从PM2.5浓度空间分布、PM2.5污染的人口暴露特征、PM2.5污染人口暴露强度以及人口加权PM2.5浓度4个方面评估北京地区PM2.5污染暴露风险。结果显示: 1)PM2.5浓度呈现南高北低的空间分布特征, 人口暴露风险空间分布与人口密度空间分布呈现高度的一致性, 即人口密度高的区域,PM2.5污染人口暴露风险也相对较高; 2) 2014, 2015, 2016年北京地区GB3095-2012二级年均浓度标准35 μg/m3的超标人口比例均为100%, 24小时平均浓度标准75 μg/m3的超标人口比例呈逐年显著下降趋势; 3) 2014-2016年北京市人口加权PM2.5年均浓度值与PM2.5年均值均存在差异, 差异度与城市暴露人口和污染情况密切相关; 4) 由于PM2.5污染物浓度空间分布特征与人口密度空间分布特征不同, 北京市PM2.5污染对总体人群的实际影响和健康危害与其平均浓度水平并不相同, 因此考虑人口密度空间分布特征的暴露风险评估比只考虑PM2.5污染物浓度的暴露风险评估更准确。

关 键 词:PM2.5  人口暴露  人口加权  风险评估
收稿时间:2017-09-22

Risk Assessment of Exposure to PM2.5 in Beijing Using Multi-Source Data
ZHANG Xiya,HU Haibo. Risk Assessment of Exposure to PM2.5 in Beijing Using Multi-Source Data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 1103-1113. DOI: 10.13209/j.0479-8023.2018.031
Authors:ZHANG Xiya  HU Haibo
Affiliation:Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089
Abstract:Through GIS spatial analysis, this study firstly conducts spatial distribution ofPM2.5 concentrations usingPM2.5 data from 35 automatic air quality monitoring stations in Beijing during the period of 2014–2016. Then population spatial processing is carried out based on DMSP/OLS nighttime light data. On this basis, the authors assess the exposure risk toPM2.5 pollution in Beijing from four aspects:PM2.5 concentration, the characteristic of population exposure, the population exposure intensity, and the population weighted concentration. The results show that 1) highPM2.5 concentrations were mainly distributed in the south, while low concentrations were distributed in the north. There was a good spatial coincidence between the distribution of population exposure to PM2.5 and population distribution, i.e. the densely populated area had high risk of population exposure toPM2.5. 2) During 2014–2016, 100% of population exposed to highPM2.5 yearly mean concentrations (>35 μg/m3) which exceeded the secondary level of Ambient Air Quality Standards (GB 3095–2012), and the ratio of population exposed to 24 hourly mean concentrations (>75 μg/m3) declined over a 3-year period. The share of population exposure to exceeding standardPM2.5 concentration was much higher than those in global average level. 3) The population weightedPM2.5 yearly average concentrations andPM2.5 yearly average concentrations had difference, which is related with exposed population and the distribution ofPM2.5 pollution. 4) The distributions ofPM2.5 concentration and population are different, so the real impact level on health of human ofPM2.5 pollution is different fromPM2.5 concentration. Thus, taking the factor of population into account, the risk assessment of exposure toPM2.5 pollution is more accurate.
Keywords:PM2.5  population exposure  population weighted  risk assessment  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号