首页 | 本学科首页   官方微博 | 高级检索  
     


Some semi-bent functions with polynomial trace form
Authors:Hao Chen  Xiwang Cao
Affiliation:1. Department of Math, Nanjing University of Aeronautics and Aeronautics, Nanjing, 211106, China
Abstract:This paper is devoted to the study of semi-bent functions with several parameters flexible on the finite field (mathbb{F}_{2^n } ) . Boolean functions defined on (mathbb{F}_{2^n } ) of the form $f_{a,b}^{(r)} (x) = Tr_1^n (ax^{r(2^m - 1)} ) + Tr_1^4 (bx^{tfrac{{2^n - 1}} {5}} ) $ and the form $g_{a,b,c,d}^{(r,s)} (x) = Tr_1^n (ax^{r(2^m - 1)} ) + Tr_1^4 (bx^{tfrac{{2^n - 1}} {5}} ) + Tr_1^n (cx^{(2^m - 1)tfrac{1} {2} + 1} ) + Tr_1^n (dx^{(2^m - 1)s + 1} ) $ where n = 2m, m ≡ 2 (mod 4), a, c (mathbb{F}_{16} ) , and b (mathbb{F}_2 ) , d (mathbb{F}_2 ) , are investigated in constructing new classes of semi-bent functions. Some characteristic sums such as Kloosterman sums and Weil sums are employed to determine whether the above functions are semi-bent or not.
Keywords:Boolean function   Dickson polynomial   exponential sum   Kloosterman sum   semi-bentfunction   Walsh-Hadamard transformation   Weil sum.
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号