首页 | 本学科首页   官方微博 | 高级检索  
     

乘性/加性噪声Markov跳变系统线性均方最优控制
引用本文:伍友利,方洋旺,王洪强,刘文杰. 乘性/加性噪声Markov跳变系统线性均方最优控制[J]. 空军工程大学学报(自然科学版), 2009, 10(5): 32-36
作者姓名:伍友利  方洋旺  王洪强  刘文杰
作者单位:空军工程大学,工程学院,陕西,西安,710038 
基金项目:国家自然科学基金资助项目,国家"863"计划资助项目,空军工程大学工程学院优秀博士学位论文创新基金资助项目 
摘    要:针对具有乘性/加性噪声的离散时间Markov跳变线性系统,运用Bellamn随机动态规划法,对于噪声相互独立和相关两种情形推导了有限终止时间和无限终止时间的随机LQ最优控制算法,控制器的求解归结为求一组代数Riccati方程解.与不含有乘性噪声的系统相比较,此Riccati方程中多了包含噪声强度的项,反映了噪声对控制器的影响,从而改善了系统的性能.仿真结果与名义系统相比较,表明了本文所设计的控制器使系统具有更优的性能.

关 键 词:乘性/加性噪声  Markov跳变系统  最优控制  Bellman随机动态规划法

Linear Quadratic Optimal Control for Discrete-Time Markov Jump System with Multiplicative and Additive Noise
WU You-li,FANG Yang-wang,WANG Hong-qiang,LIU Wen-jie. Linear Quadratic Optimal Control for Discrete-Time Markov Jump System with Multiplicative and Additive Noise[J]. Journal of Air Force Engineering University(Natural Science Edition), 2009, 10(5): 32-36
Authors:WU You-li  FANG Yang-wang  WANG Hong-qiang  LIU Wen-jie
Abstract:The finite and infinite horizon stochastic linear quadratic optimal control algorithms for discrete-time Markov jump with multiplicative and additive noise system are presented based on Bemllman stochastic dynamic programming. And an optimal control is studied when the noises are correlated. The solution to the controller boils down to solving a set of algebra Riccati equations. The algebra Riccati equations include the noise covariance matrix which describes the effect of the noise on the controller, so the performance of the system is improved. Finally, the simulation results show that the performance of the system with the controller in this paper is better than that of the nominal system.
Keywords:multiplicative and additive noise   Markov jump system   optimal control   Bemllman stochastic dynamic programming
本文献已被 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号