首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于AC-RBF神经网络的网络安全态势预测方法
引用本文:李方伟,郑波,朱江,张海波. 一种基于AC-RBF神经网络的网络安全态势预测方法[J]. 重庆邮电大学学报(自然科学版), 2014, 26(5): 576-581
作者姓名:李方伟  郑波  朱江  张海波
作者单位:重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065;重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065;重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065;重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065
基金项目:国家自然科学基金(61271260,61301122);教育部科学研究重点项目(212145);重庆市教委科学技术研究项目(KJ1400405)
摘    要:为了准确地把握网络安全发展态势,提出了一种基于自适应聚类径向基函数(adaptive clustering radical basis function,AC-RBF)神经网络的网络安全态势预测(network security situation prediction, NSSP)方法?该方法对网络安全态势样本自适应聚类,获得了神经网络隐层节点数,采用梯度下降法训练神经网络,寻找网络安全态势样本之间的非线性映射关系,利用该关系对未来时刻网络安全态势进行了预测? 仿真实验表明,相对于 K-均值 RBF 神经网络及支持向量机(support vector machine,SVM)预测模型,该方法在神经网络规模较小的情况下,不仅能够反映网络安全态势的总体趋势,而且还提高了预测精度,能够提供给网络安全管理员一个直观的网络安全态势图 ?

关 键 词:自适应聚类径向基函数(AC-RBF)神经网络  网络安全态势预测(NSSP)  态势图
收稿时间:2014-03-24
修稿时间:2014-05-05

A method of network security situation prediction based on AC-RBF neural network
LI Fangwei,ZHENG Bo,ZHU Jiang and ZHANG Haibo. A method of network security situation prediction based on AC-RBF neural network[J]. Journal of Chongqing University of Posts and Telecommunications, 2014, 26(5): 576-581
Authors:LI Fangwei  ZHENG Bo  ZHU Jiang  ZHANG Haibo
Affiliation:Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,P.R.China;Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,P.R.China;Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,P.R.China;Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,P.R.China
Abstract:To grasp the trend of network security,a method of network security situation prediction (NSSP)based on adaptive clustering radical basis function(AC-RBF)neural network is proposed.The neural network hidden nodes are obtained by clustering the network security situation samples adaptively.We can train the neural network by gradient descent and find out the nonlinear relations among situation samples, to predict the future security situation.Experiment results show that,compared with the k-means RBF neural network and Support Vector Machine(SVM)prediction model,the proposed method can not only reflect the general trend of network security situation,but also can improve the prediction accuracy in the case of small-scale neural network.Finally,the proposed method can provide the network administrators with an intuitive network security situation map.
Keywords:adaptive clustering radical basis function(AC-RBF)neural network  network security situation prediction(NSSP)  situation map
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号