首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和中值滤波器的主元分析方法
引用本文:范建华,张立君. 基于小波变换和中值滤波器的主元分析方法[J]. 河南科学, 2008, 26(9)
作者姓名:范建华  张立君
作者单位:商丘职业技术学院,计算机系,河南,商丘,476100;商丘职业技术学院,计算机系,河南,商丘,476100
摘    要:传统主元分析用于故障检测时,由于测量数据中含有噪声和异常点,从而导致系统的误报警.针对传统主元分析在处理含噪数据时的不足,给出了一种把小波变换、滑动中值滤波器和主元分析相结合的方法,利用小波变换和滑动中值滤波器的优点,对主元分析前的数据进行预处理,以去除噪声和异常点,减少和消除了虚警点,并将此方法运用于实际的故障检测中,取得了较好的检测效果,证实了该方法的有效性和可行性.

关 键 词:小波变换  滑动中值滤波器  主元分析  故障检测

The Principal Component Analysis Method Based on Wavelets Transform and Median Filter
Fan Jianhua,Zhang Lijun. The Principal Component Analysis Method Based on Wavelets Transform and Median Filter[J]. Henan Science, 2008, 26(9)
Authors:Fan Jianhua  Zhang Lijun
Affiliation:Fan Jianhua,Zhang Lijun (Department of Computer,Shangqiu Vocational , Technical College,Shangqiu 476100,Henan China)
Abstract:When applying conventional PCA to fault detection,it could lead to false-alarm of the system due to the measured data corrupted with noise and outliers. To overcome the limitations of conventional PCA handling the data corrupted with noise and outliers,an approach is developed by combining the ability of wavelets transform and moving median filter with PCA. This method utilizes the quality of wavelets and moving median filter to preprocess the data to eliminate noise and outliers,reduce and remove the false...
Keywords:wavelets transform  moving median filter  principal component analysis  fault detection  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号