首页 | 本学科首页   官方微博 | 高级检索  
     

非线性非高斯结构系统识别的粒子滤波方法
引用本文:张伟,李烨,杨晓楠. 非线性非高斯结构系统识别的粒子滤波方法[J]. 江西科学, 2008, 26(3): 387-392
作者姓名:张伟  李烨  杨晓楠
作者单位:同济大学结构工程与防灾研究所,上海,200092;华东建筑设计研究院有限公司,上海,200002
基金项目:教育部留学回国人员科研启动基金
摘    要:采用粒子滤波方法(PF方法)在非高斯噪声条件下对非线性系统进行参数识别。传统扩展卡尔曼滤波(EKF)方法具有高斯噪声假设与非线性系统线性化的缺陷,PF方法可以克服EKF方法的缺点;因此在系统识别中具有很强的鲁棒性,更适合进行非线性结构系统参数识别。数值仿真结果发现PF方法的系统识别精度高于EKF方法,证明PF方法在非线性非高斯结构系统识别中的有效性。

关 键 词:结构损伤识别  粒子滤波  扩展卡尔曼滤波  非线性  非高斯

Particle Filtering Method for Nonlinear Non-Gaussian Structural System Identification
ZHANG Wei,LI Ye,YANG Xiao-nan. Particle Filtering Method for Nonlinear Non-Gaussian Structural System Identification[J]. Jiangxi Science, 2008, 26(3): 387-392
Authors:ZHANG Wei  LI Ye  YANG Xiao-nan
Affiliation:ZHANG Wei ,LI Ye ,YANG Xiao-nan (1. Research Institute of Structural Engineering and Disaster Reduction ,Tongji University, Shanghai 200092 PRC; 2. East China Architectural Design & Research Institute Co. ,Ltd. , Shanghai 200002 PRC)
Abstract:A particle filtering(PF)method is utilized to identify a nonlinear structural system with non-Gaussian noise.Traditional extend Kalman filtering(EKF)method has some disadvantages in Gaussian noise hypothesis and to linearize nonlinear system,but the PF method can conquer such disadvantages of EKF method.Therefore,the PF method has great robust ability.It is suitable to nonlinear non-Gaussian structural parameter estimation.The numerical simulations confirm effectiveness of the proposed method for the online structural system identification.
Keywords:Structural system identification  Particle filtering  Extend kalman filtering  Nonlinear  Non-Gaussian
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号