首页 | 本学科首页   官方微博 | 高级检索  
     

基于增量式模糊聚类算法的文本挖掘
作者姓名:耿新青  王正欧
作者单位:1. 鞍山师范学院数学与信息科学学院;2. 天津大学系统工程研究所
基金项目:国家自然科学基金(60275020);
摘    要:针对传统模糊聚类算法需要预先确定初始隶属度矩阵的问题,该文提出了基于增量式模糊聚类算法(Incremental fuzzy clustering algorithm, FCLDA)的文本挖掘方法。首先根据文本集中关键词出现次数进行排序,优先选择出现次数多的关键词作为文本集的主题,然后利用隐含狄利克雷分布(Latent Dirichlet allocation, LDA)主题模型构建文档-主题概率分布组成矩阵,将该矩阵作模糊C均值聚类(FCM)算法的隶属度矩阵,并对隶属度矩阵的隶属度值增加一个权值,在FCLDA算法迭代过程中,采用模糊信息熵作为聚类数确定的标准,增加主题词,当模糊信息熵达到最小值时,聚类数确定下来,最后将FCLDA算法应用到网页的文本挖掘中,结果试验表明,相对于FCM算法和K最近邻(K-nearest neighbor)算法,FCLDA算法的运行聚类结果准确率更高,运行速度加快,更适合处理具有模糊性的文本。

关 键 词:狄利克雷分布主题模型  模糊聚类  聚类数  模糊信息熵  文本聚类
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号