首页 | 本学科首页   官方微博 | 高级检索  
     

车牌检测级联分类器快速训练算法
引用本文:方义秋,卢道兵,葛君伟. 车牌检测级联分类器快速训练算法[J]. 重庆邮电学院学报(自然科学版), 2010, 0(1)
作者姓名:方义秋  卢道兵  葛君伟
作者单位:重庆邮电大学GIS研究所;
基金项目:重庆市教委资助项目(KJ090519)
摘    要:针对传统AdaBoost算法的不足,分析了训练过程中出现过训练及分类器退化的问题,并提出了解决这一问题的有效新方法。新方法主要对样本及时更新和样本权重的更新规则进行了调整。使用该方法训练级联车牌检测器,实验结果表明,新方法较好地解决了传统AdaBoost算法中所出现的过训练及退化问题,在保证检测率的同时降低了误检率,并且训练时间缩短了50%左右。

关 键 词:AdaBoost算法  样本更新  权重调整  车牌检测  

Improved license plate detection method based on AdaBoost algorithm
FANG Yi-qiu,LU Dao-bing,GE Jun-wei. Improved license plate detection method based on AdaBoost algorithm[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition), 2010, 0(1)
Authors:FANG Yi-qiu  LU Dao-bing  GE Jun-wei
Affiliation:GIS Research Centre;Chongqing University of Posts and Telecommunications;Chongqing 400065;P.R.China
Abstract:Focusing on the disadvantages of classical AdaBoost algorithm,this paper analyzes the issues of excessive training and overfitting for classifiers and proposes a new method to avoid these problems.The new method is to update the training samples in time and regulate the updated rules of sample weights.As a result,using the method to train a cascade license plate,the experimental results show that the new method does not lead to the issues of excessive training and overfitting like classical AdaBoost often d...
Keywords:AdaBoost algorithm  sample update  weight adjustment  license plate detection  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号