Affiliation: | (1) Department of Microbiology, University of Manitoba, R3T 2N2 Winnipeg MB, Canada;(2) Institut de BiologÍa Molecular de Barcelona, Consejo Superior de Investigaciones CientÍficas, 18–26 Jordi-Girona, Barcelona, Spain |
Abstract: | More than 300 catalase sequences are now available, divided among monofunctional catalases (> 225), bifunctional catalase-peroxidases (> 50) and manganese-containing catalases (> 25). When combined with the recent appearance of crystal structures from at least two representatives from each of these groups (nine from the monofunctional catalases), valuable insights into the catalatic reaction mechanism in its various forms and into catalase evolution have been gained. The structures have revealed an unusually large number of modifications unique to catalases, a result of interacting with reactive oxygen species. Biochemical and physiological characterization of catalases from many different organisms has revealed a surprisingly wide range of catalatic efficiencies, despite similar sequences. Catalase gene expression in micro-organisms generally is controlled either by sensors of reactive oxygen species or by growth phase regulons, although the detailed mechanisms vary considerably.Received 2 June 2003; received after revision 24 June 2003; accepted 1 July 2003 |