首页 | 本学科首页   官方微博 | 高级检索  
     

用分段回归方法计算孔隙结构的分形维数
引用本文:马新仿,张士诚,郎兆新. 用分段回归方法计算孔隙结构的分形维数[J]. 中国石油大学学报(自然科学版), 2004, 28(6)
作者姓名:马新仿  张士诚  郎兆新
作者单位:石油大学石油天然气工程学院,北京,102249
基金项目:国家"973"项目(G1999022509)
摘    要:储层岩石的孔隙空间具有良好的分形特征,孔隙结构的分形维数可以用来定量描述孔隙结构的复杂程度。应用分形几何的原理,推导了储层岩石不同孔隙分布和毛细管压力曲线的分形几何模型。根据毛管压力曲线资料,用分段回归的方法计算了不同孔隙结构的分形维数。计算结果表明,用分段回归方法计算孔隙结构的分形维数能更好地反映孔隙结构的实际情况。若孔隙大小相差不大,孔隙结构的分形维数相等或比较接近;若孔隙大小相差较大、非均质性较强,得到的孔隙结构分形维数不同。

关 键 词:储层岩石  孔隙结构  分段回归方法  分形维数  毛管压力

Calculation of fractal dimension of pore structure by using subsection regression method
MA Xin-fang,ZHANG Shi-cheng,LANG Zhao-xin. Calculation of fractal dimension of pore structure by using subsection regression method[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2004, 28(6)
Authors:MA Xin-fang  ZHANG Shi-cheng  LANG Zhao-xin
Abstract:The pore spaces in reservoir rocks have fractal property. The fractal dimension of pore structure can be used to quantitatively describe the complexity of pore structure. According to the principle of fractal geometry, the fractal models for describing the pore size distribution and capillary pressure curve were developed. On the basis of the capillary pressure data, the fractal dimension of pore structure was calculated by using subsection regression method. The results obtained by the subsection regression method can really reflect the pore structure in reservoir. If the difference of pore sizes is small, the fractal dimensions of pore structure are equivalent or close. If the difference of pore sizes is big and the inhomogeneity of reservoir is strong, the fractal dimensions are different.
Keywords:reservoir rock  pore structure  subsection regression method  fractal dimension  capillary pressure
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号