首页 | 本学科首页   官方微博 | 高级检索  
     

一类分数阶奇异q-差分方程边值问题解的存在性和唯一性
引用本文:郭彩霞,郭建敏,田海燕,康淑瑰. 一类分数阶奇异q-差分方程边值问题解的存在性和唯一性[J]. 西南师范大学学报(自然科学版), 2018, 43(12): 6-10
作者姓名:郭彩霞  郭建敏  田海燕  康淑瑰
作者单位:山西大同大学 数学与统计学院, 山西 大同 037009
基金项目:国家自然科学基金项目(11271235,11871314);国家自然科学基金青年科学基金项目(61803241);山西大同大学校级青年科研基金项目(2014Q10,2017Q2).
摘    要:主要讨论了一类奇异分数阶q-差分方程边值问题,其中控制函数含有分数阶q-导数.首先利用分数阶q-差分理论将该问题转化为等价的分数阶q-积分方程,得到了相关的格林函数;其次详细地证明了积分算子的全连续性,通过运用Schauder不动点定理和Banach不动点定理,证明了该边值问题解的存在性和唯一性,证明过程中,巧妙地应用了贝塔函数,使奇异问题得以解决;最后为了说明定理的有效性,给出了一个例子.

关 键 词:q-差分  奇异  边值问题  贝塔函数  不动点定理
收稿时间:2017-12-17

Existence and Uniqueness of Solution for a Class of Singular Fractional q-Difference Boundary Value Problem
GUO Cai-xi,GUO Jian-min,TIAN Hai-yan,KANG Shu-gui. Existence and Uniqueness of Solution for a Class of Singular Fractional q-Difference Boundary Value Problem[J]. Journal of southwest china normal university(natural science edition), 2018, 43(12): 6-10
Authors:GUO Cai-xi  GUO Jian-min  TIAN Hai-yan  KANG Shu-gui
Affiliation:School of Mathematics and Statistics, Shanxi Datong University, Datong Shanxi 037009, China
Abstract:In this paper, we have discussed a class of singular fractional q-difference boundary value problems, in which the control function contains fractional q-derivatives. Firstly, it is transformed into an equivalent fractional q-integral equation by using fractional q-difference theory and the related Green''s function is obtained. Secondly, the complete continuity of the integral operator is proved in detail. Then the existence and uniqueness of the solution for fractional order q-difference boundary value problems is discussed by means of Banach fixed point theorem and Schauder fixed point theorem. In the process of proof, beta function is skillfully applied to solve the singular problem. At last, an example is given to illustrate the validity of theorems.
Keywords:q-difference  singular  boundary value problem  beta function  fixed point theorem
本文献已被 CNKI 等数据库收录!
点击此处可从《西南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号