首页 | 本学科首页   官方微博 | 高级检索  
     

缠绕方程组的解法
引用本文:韩友发,周晓,马野萍,孙德芝. 缠绕方程组的解法[J]. 辽宁师范大学学报(自然科学版), 2013, 0(4): 443-448
作者姓名:韩友发  周晓  马野萍  孙德芝
作者单位:辽宁师范大学数学学院,辽宁大连116029
基金项目:国家自然科学基金项目(11071106);辽宁省高等学校优秀人才支持计划项目(LR2011031)
摘    要:考虑缠绕方程组 N(O+ iR)= Ki (i=0,1,2,3),其中 O是有理缠绕或者是2个有理缠绕的和,R是有理缠绕,并且O和R都是未知的缠绕,iR表示i个R的缠绕和,N是缠绕的分子的构造,Ki是已知的纽结或链环。解出上述模型中的未知缠绕 O和R 。通过将有理缠绕与有理纽结或链环(二桥结)联系起来,对于方程组 N(O+ iR)= Ki (i=0,1,2,3),从 Ki(0≤ i≤3)的交叉点数入手,得到了方程组的一般解法。

关 键 词:缠绕  二桥结  DNA

The method of solving tangle equations
HAN Youfa,ZHOU Xiao,MA Yeping,SUN Dezhi. The method of solving tangle equations[J]. Journal of Liaoning Normal University(Natural Science Edition), 2013, 0(4): 443-448
Authors:HAN Youfa  ZHOU Xiao  MA Yeping  SUN Dezhi
Affiliation:(School of Mathematics, Liaoning Normal University, Dalian 116029, China)
Abstract:In this paper ,we give the methods of solving the tangle equations N(O+ iR)= Ki(i=0 ,1 , 2 ,3) ,where O is a rational tangle or the summand of two rational tangles ,and R is a rational tangle . In addition ,O and R are unknown tangles ,iR denotes the tangle sum of i copies of R ,N is the nu-merator construction of the tangle ,and Ki are the known knots or links .Then our task is working out the unknow n tangles O and R in the above mathematical model .In order to simplify the calcula-tion ,we give the vector representation of tangles by the constructions of the tangles and get the gen-eral solution of the equations N(O+ iR)= Ki(i=0 ,1 ,2 ,3) by using the crossing numbers of Ki(0≤i≤3) .
Keywords:tangle  2-bridge knot  DNA
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号