首页 | 本学科首页   官方微博 | 高级检索  
     

基于树形通用背景模型的高效说话人辨认
引用本文:熊振宇,郑方,宋战江,吴文虎. 基于树形通用背景模型的高效说话人辨认[J]. 清华大学学报(自然科学版), 2006, 46(7): 1305-1308
作者姓名:熊振宇  郑方  宋战江  吴文虎
作者单位:清华大学,计算机科学与技术系,智能技术与系统国家重点实验室,北京,100084;北京得意音通技术有限责任公司,北京,100085
摘    要:为了提高基于G auss混合模型通用背景模型(GMM-U BM)的说话人辨认系统的运算效率,提出一种基于树的核心挑选算法(TBK S),通过将U BM中的各个G auss分布按组织成树形结构,来减少从中挑选核心分布的运算量。实验结果表明:对1 000个说话人进行辨认,TBK S与现有的基于特征矢量重排序的剪枝算法(ORBP)相结合,将基于GMM-U BM的辨认系统的运算速度提高21.9倍,误识率却只上升不到4%;TBK S和ORBP相结合,可大幅度提高GMM-U BM系统的运算效率,而基本不降低识别率。

关 键 词:信息处理  说话人辨认  Gauss混合模型  通用背景模型  基于树的核心挑选
文章编号:1000-0054(2006)07-1305-04
修稿时间:2005-06-10

Tree-structure universal background model-based efficient speaker identification
XIONG Zhenyu,ZHENG Fang,SONG Zhanjiang,WU Wenhu. Tree-structure universal background model-based efficient speaker identification[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(7): 1305-1308
Authors:XIONG Zhenyu  ZHENG Fang  SONG Zhanjiang  WU Wenhu
Abstract:A tree-based kernel selection(TBKS) algorithm,in which all the Gaussian components in the universal background model are clustered hierarchically into a tree structure for efficient kernel selection,was developed as a computationally efficient approach for Gaussian mixture model-universal background model-based speaker identification.In tests on a database of 1 000 speakers, integration of the TBKS algorithm and an observation reordering-based pruning(ORBP) method improved the computation speed by a factor of 21.9 with only 4% increase in error rate compared with the baseline GMM-UBM system.The experimental results show that by integrating the TBKS and ORBP algorithms,the computation efficiency of the GMM-UBM system can be significantly improved with almost no reduction in recognition rate.
Keywords:information processing  speaker identification  Gaussian mixture model  universal background model  tree-based kernel selection
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号