摘 要: | 为解决类圆杆物生产分装过程中传统计数方法计数准确率低和检测速度慢等问题,采用一种融合GIoU优化算法与注意力机制YOLOv3的类圆杆物检测计数方法(adaptive attentional mechanism YOLOv3,AAM-YOLOv3)。首先使用数据增强技术对标定数据进行扩增,减少模型过拟合现象;然后,以K-means算法聚类训练数据,自适应确定锚框尺寸,并采用GIoU算法优化回归损失函数;最后,引入混合注意力模块(CBAM)强化检测网络提取目标位置有效特征,忽略不重要特征信息,以克服传统YOLOv3算法中因特征提取不充分而导致目标漏检的问题。结果表明,所提出的AAM-YOLOv3模型检测mAP值为97.5%,计数准确率为98.9%,较改进前分别提高5.8%和4.4%,检测速度达到40 fps。所提算法以及检测计数方法可快速高效地实现类圆杆物的准确计数,能满足生产分装过程检测要求。
|