首页 | 本学科首页   官方微博 | 高级检索  
     

超空间拓扑动力系统的拓扑熵问题
引用本文:宋晓倩,王延庚. 超空间拓扑动力系统的拓扑熵问题[J]. 西北大学学报(自然科学版), 2009, 7(2): 1-9
作者姓名:宋晓倩  王延庚
作者单位:西北大学数学系,陕西西安710069
基金项目:陕西省自然科学基金资助项目(SJ08A24)
摘    要:研究拓扑动力系统(X,f)的拓扑熵ent^*(f)和它诱导的超空间拓扑动力系统(K(X),f^-)拓扑熵ent^*(f)之间的关系。利用拓扑熵ent^*(f)的性质,以拓扑动力系统与它诱导的超空间拓扑动力系统之间的关系为切入点。得出了拓扑动力系统(X,f)的拓扑熵不大于它诱导的超空间拓扑动力系统(K(X),f^-)的拓扑熵;当拓扑动力系统(X,f)的拓扑熵大于0时,超空间拓扑动力系统(K(X),f^-)的拓扑熵为∞。ent^*(f)具有Adler拓扑熵和Bowen拓扑熵的一般性质。

关 键 词:拓扑熵  超空间  Vietoris拓朴  子系统

Topological entropy for maps induced on hyperspaces
SONG Xiao-qian,WANG Yan-geng. Topological entropy for maps induced on hyperspaces[J]. Journal of Northwest University(Natural Science Edition), 2009, 7(2): 1-9
Authors:SONG Xiao-qian  WANG Yan-geng
Affiliation:(Department of Mathematics, Northwest University, Xian 710069, China)
Abstract:To study the connection between topological entropy ent^*(f) of dynamical system (X,f) and topological entropy ent^*(f) of induced hyperspace dynamical system (K(X), f^-). Use the properties of topological entropy ent^*(f) as well as the relationship between the two dynamics. Two results were obtained. (1) ent^8(f^-)≤ent^*(f^-).(2)If the base map has positive topological entropy, corresponding hyperspace map has infinite topological entropy. The topological entropy ent^*(f) has the general properties as topological entropy defined by Adler and Bowen.
Keywords:topological entropy  hyperspace system  vietoris topology  subsystem
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号