准坐标下约束Hamilton系统的Noether对称性与守恒量研究 |
| |
摘 要: | 本文研究在相空间中的准坐标下非保守奇异系统的Noether对称性和守恒量。首先,将奇异性导致的内在约束按外在非完整约束等效处理,利用Euler-Lagrange方程变换得到准坐标下的约束Hamilton系统的正则方程;其次引进时间、准坐标和广义动量的无限小变换,得到系统Hamilton作用量在此变换下的Noether广义准对称性的定义、判据和定理,并研究了该系统的Noehter对称性逆问题。研究结果表明,准坐标下的约束力学系统比广义坐标下的约束力学系统更具有普遍性,准坐标可使奇异系统表达更简洁。
|
本文献已被 CNKI 等数据库收录! |
|