首页 | 本学科首页   官方微博 | 高级检索  
     

多目标显著性区域提取算法
引用本文:孟琭,陈妹雅. 多目标显著性区域提取算法[J]. 东北大学学报(自然科学版), 2018, 39(10): 1380-1384. DOI: 10.12068/j.issn.1005-3026.2018.10.003
作者姓名:孟琭  陈妹雅
作者单位:(东北大学 信息科学与工程学院, 辽宁 沈阳110819)
基金项目:国家自然科学基金资助项目(61101057).国家自然科学基金资助项目(51171041).
摘    要:结合对象估计和超像素分割,提出面向多目标的显著性区域提取算法.首先,应用对象估计对图像中的多目标作初步检测,得到若干个显著性区域的初步结果;然后,再将这些显著性区域与超像素分割的结果作图像拼接,完善这些显著性区域;最后,将图像拼接的结果二值化,作为多目标显著性区域提取的最终结果.结果表明:所提算法可实现面向多目标的显著性区域提取.与3个经典算法的比较结果表明:所提算法在面向多目标显著性区域提取时更优.

关 键 词:多目标  显著性区域  对象估计  超像素分割  图像处理  

Salient Region Extraction Algorithm for Multi-target
MENG Lu,CHEN Mei-ya. Salient Region Extraction Algorithm for Multi-target[J]. Journal of Northeastern University(Natural Science), 2018, 39(10): 1380-1384. DOI: 10.12068/j.issn.1005-3026.2018.10.003
Authors:MENG Lu  CHEN Mei-ya
Affiliation:School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
Abstract:Combining object estimation and super-pixel segmentation, a salient region extraction algorithm for multi-target was proposed. First, object estimation was used to make a preliminary extraction of multi-target in image, and the preliminary results of several salient regions were obtained. Then, these several salient regions were concatenated with the results of super-pixel segmentation to complete the saliency extraction. Finally, the concatenated regions were binarized as the final results of salient region for multi-target. The results showed that the proposed algorithm can achieve multi-target salient region extraction. The comparison with three classical algorithms indicated that the proposed algorithm is better when it is faced with salient region extraction for multi-target.
Keywords:multi-target  salient region  object estimation  super-pixel segmentation  image processing  
本文献已被 CNKI 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号