首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度神经网络剪枝的两阶段遥感图像目标检测
引用本文:王生生,王萌,王光耀. 基于深度神经网络剪枝的两阶段遥感图像目标检测[J]. 东北大学学报(自然科学版), 2019, 40(2): 174-179. DOI: 10.12068/j.issn.1005-3026.2019.02.005
作者姓名:王生生  王萌  王光耀
作者单位:吉林大学 计算机科学与技术学院,吉林 长春,130012;吉林大学 计算机科学与技术学院,吉林 长春,130012;吉林大学 计算机科学与技术学院,吉林 长春,130012
基金项目:国家自然科学基金资助项目(61472161); 吉林省科技发展计划项目(20180101334JC,20190302117GX).
摘    要:在高分辨率遥感图像目标检测中,受云雾、光照、复杂背景、噪声等因素影响,现有目标检测方法虚警率高、速度慢、精确度低.为此提出基于深度神经网络剪枝的两阶段目标检测(object detection based on deep pruning,ODDP)方法.首先,给出深度神经网络剪枝方法,基于深度神经网络剪枝分别提出自主学习区域提取网络算法与优化训练分类网络算法;然后,将上述两算法用于卷积神经网络,得到两阶段目标检测模型.实验结果表明,在NWPU VHR-10高分辨率遥感数据集上,相比现有目标检测方法,ODDP的检测速度和精度均有一定提升.

关 键 词:计算机视觉  目标检测  高分辨率遥感图像  深度学习  卷积神经网络
收稿时间:2017-11-30
修稿时间:2017-11-30

Deep Neural Network Pruning Based Two-Stage Remote Sensing Image Object Detection
WANG Sheng-sheng,WANG Meng,WANG Guang-yao. Deep Neural Network Pruning Based Two-Stage Remote Sensing Image Object Detection[J]. Journal of Northeastern University(Natural Science), 2019, 40(2): 174-179. DOI: 10.12068/j.issn.1005-3026.2019.02.005
Authors:WANG Sheng-sheng  WANG Meng  WANG Guang-yao
Affiliation:College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Abstract:In the object detection of high-resolution remote-sensing images, affected by cloud, light, complex background, noise and other factors, the existing object detection method has high false alarm, low speed and low precision. So we propose a two-stage object detection method based on deep pruning. First, we propose deep pruning, and then based on the deep pruning we propose an algorithm that learns region proposal network automatically and an algorithm that we train classification network with optimizing training method. We then apply the two algorithms to convolutional neural network and get a two-stage object detection model. The experiment result shows that our method has a certain improvement on precision and speed compared with the state-of-the-art method.
Keywords:computer vision  object detection  high-resolution remote sensing image  deep learning  convolutional neural network  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号