首页 | 本学科首页   官方微博 | 高级检索  
     

多个体参与交叉的遗传算法
引用本文:攀登,王安麟. 多个体参与交叉的遗传算法[J]. 上海交通大学学报, 1999, 33(11): 1453-1457
作者姓名:攀登  王安麟
作者单位:上海交通大学机械工程学院上海200030
摘    要:提出了多个体参与交叉的遗传算法,即采取新的交叉算子使子代个体同时含有多个父代个体的模式.突破了以前遗传算法只有两个个体参与交叉的局限,通过调整参与交叉的父代个体数目和交叉后产生的后代个体数目,实际上提出了遗传算法调试中的两个新参数.通过调整新参数,使得遗传算法可能有更高的计算效率.证明了多个体参与交叉的遗传算法的模式定理.将方差与熵作为描述遗传算法解群多样性的工具.分析了多个体参与交叉的遗传算法对解群方差及熵的影响.通过一个算例验证了多个体参与交叉的遗传算法具有较高的计算效率

关 键 词:遗传算法  交叉算子  模式定理  解群多样性  计算效率
文章编号:1006-2467(1999)11-1453-05
修稿时间:1998-07-22

Genetic Algorithm with Multiple Individuals Crossover
PAN Deng,WANG An lin School of Mechanical Eng.,Shanghai Jiaotong Univ.,Shanghai ,China. Genetic Algorithm with Multiple Individuals Crossover[J]. Journal of Shanghai Jiaotong University, 1999, 33(11): 1453-1457
Authors:PAN Deng  WANG An lin School of Mechanical Eng.  Shanghai Jiaotong Univ.  Shanghai   China
Affiliation:PAN Deng,WANG An lin School of Mechanical Eng.,Shanghai Jiaotong Univ.,Shanghai 200030,China
Abstract:A new genetic algorithm was presented, which proceeds crossover with multiple individuals and permits that an individual in the next generation possesses schemata from multiple different individuals of this generation. In fact, the crossover was presented as two new parameters of genetic algorithm. The schema theorem was proved for the genetic algorithm with multiple individuals crossover. Variance and entropy were proposed as the measures of diversity of population in genetic algorithm. The influence which the genetic algorithm with multiple individuals crossover act upon the variance and entropy was analyzed. The example proves that this genetic algorithm is feasible and efficient.
Keywords:genetic algorithm  crossover  schema theorem  diversity of population  computational efficiency
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号