摘 要: | 在消费金融服务场景下,存在用户逾期还款的情况。在逾期协商还款过程中,少量用户篡改图像凭证,实现不当得益。这些篡改集中在个人信息、印章、出具单位等具有很强的上下文语义联系内容上。基于此,在传统空域直接像素空间RGB和频域离散余弦变换(discrete cosin transform, DCT)作为判别特征的基础上,引入了文字块、印章块的位置关系和反卷积网络,实现了一种包含语义关系的端到端全卷积神经网络模型。该模型在天池2022年“真实场景篡改图像检测挑战赛”的数据集上,相对于传统模型平均交并比有3.97%的提升,在实际凭证图像篡改判断中,提升了3.7%的篡改检测准确率。
|