首页 | 本学科首页   官方微博 | 高级检索  
     

基于上下文语义信息的凭证篡改检测研究
作者姓名:李佩  王伟  刘勇  王义
摘    要:在消费金融服务场景下,存在用户逾期还款的情况。在逾期协商还款过程中,少量用户篡改图像凭证,实现不当得益。这些篡改集中在个人信息、印章、出具单位等具有很强的上下文语义联系内容上。基于此,在传统空域直接像素空间RGB和频域离散余弦变换(discrete cosin transform, DCT)作为判别特征的基础上,引入了文字块、印章块的位置关系和反卷积网络,实现了一种包含语义关系的端到端全卷积神经网络模型。该模型在天池2022年“真实场景篡改图像检测挑战赛”的数据集上,相对于传统模型平均交并比有3.97%的提升,在实际凭证图像篡改判断中,提升了3.7%的篡改检测准确率。

关 键 词:图像篡改检测  篡改区域定位  语义分割  神经网络  深度学习
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号