摘 要: | 现有对低级别胶质瘤(low-grade glioma, LGG)分子亚型三分类的研究依赖于LGG医学影像数据,数据样本少且难获取导致模型较难学习到LGG分子亚型之间的差异,降低了模型的分类性能。基于此,提出了LGG分子亚型三分类方法MODDA,利用基因注意力网络提取LGG多组学数据的重要特征,使用嵌入网络处理临床数据得到临床数据特征;将临床数据特征与组学数据重要特征进行融合,采用密集深度神经网络进行LGG分子亚型分类。实验结果表明,MODDA的分类性能优于现有LGG分子亚型分类方法,并且在外部验证数据集上也表现出较好的泛化性能。此外,对卡方检验过程中发现的重要基因进行了富集基因本体论(gene ontology, GO)术语和生物学途径分析,有助于LGG的个性化治疗。
|