首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways
Authors:M. Y. Lee  S. H. Lee  J. H. Park  H. J. Han
Affiliation:(1) Department of Veterinary Physiology, Biotherapy Human Resources Center (BK21), College of Veterinary Medicine, Chonnam National University, Gwangju, 500 – 757, Korea
Abstract:Galectins have the potential to provide a promising alternative for unveiling the complexity of embryonic stem (ES) cell self-renewal, although the mechanism by which galectins maintain ES cell self-renewal has yet to be identified. Galectin-1 increased [3H]-thymidine incorporation as well as cyclin expression and decreased p27kip1 expression. Src and caveolin-1 phosphorylation was increased by galectin-1, and phospho-caveolin-1 was inhibited by PP2. In addition, inhibition of caveolin-1 by small interfering RNA and methyl-β-cyclodextrin (Mβ-CD) decreased galectin-1-induced cyclin expression and [3H]-thymidine incorporation. Galectin-1 caused Akt and mTOR phosphorylation, which is involved in cyclin expression. Galectin-1-induced phospho-Akt and -mTOR was inhibited by PP2, ERas siRNA, caveolin-1 siRNA and Mβ-CD. Furthermore, mTOR phosphorylation was decreased by LY294002 and Akt inhibitor. Galectin-1-induced increase in cyclin expression and decrease in p27kip1 was blocked by Akt inhibitor and rapamycin. In conclusion, galectin-1 increased DNA synthesis in mouse ES cells via Src, caveolin-1 Akt, and mTOR signaling pathways. Received 30 October 2008; received after revision 18 February 2009; accepted 24 February 2009
Keywords:  KeywordHeading"  >. ES cell  proliferation  galectin-1  Src  caveolin-1
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号