首页 | 本学科首页   官方微博 | 高级检索  
     

扩展随机神经网络及其概率结构特性分析
引用本文:毛志宏,林元烈. 扩展随机神经网络及其概率结构特性分析[J]. 清华大学学报(自然科学版), 1998, 0(3)
作者姓名:毛志宏  林元烈
作者单位:1. 清华大学,自动化系,100084
2. 清华大学,应用数学系,北京,100084
摘    要:在Gelenbe随机神经网络(GNN)模型基础上,提出扩展GNN(EGNN)模型。考虑信号释放强度依赖于神经元兴奋水平的情形,给出了EGNN的平稳分布。讨论了平稳分布存在的条件。在较弱假设下,EGNN仍具有简洁的“积”形式平稳分布,比原GNN增强了调节平稳分布概率结构特性的功能,且能够表达更多的智能和生物特性。例举了它的联想功能。

关 键 词:随机神经网络;Jackson网络;概率结构

Extended random neural network model and its probability structure features
MAO Zhihong,LIN Yuanlie. Extended random neural network model and its probability structure features[J]. Journal of Tsinghua University(Science and Technology), 1998, 0(3)
Authors:MAO Zhihong  LIN Yuanlie
Abstract:This paper proposes an extended random neural network (EGNN) model based on the model of Gelenbe's random neural network (GNN). It considers the case that the time intervals between successive signal emissions of a neuron are dependent on the neuron potential, and analyzes the stationary distribution of the EGNN. The paper proves that the EGNN has a stationary distribution of product form which leads to simple expressions for the system state, and shows that it has enhanced functions of adjusting the probability structure comparing with the GNN. Thus, the EGNN is competent in representing many intelligent and biological features (e.g., the feature of associated memory).
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号