首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental evidence that potassium is a substantial radioactive heat source in planetary cores
Authors:Murthy V Rama  van Westrenen Wim  Fei Yingwei
Affiliation:Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA. vrmurthy@umn.edu
Abstract:The hypothesis that (40)K may be a significant radioactive heat source in the Earth's core was proposed on theoretical grounds over three decades ago, but experiments have provided only ambiguous and contradictory evidence for the solubility of potassium in iron-rich alloys. The existence of such radioactive heat in the core would have important implications for our understanding of the thermal evolution of the Earth and global processes such as the generation of the geomagnetic field, the core-mantle boundary heat flux and the time of formation of the inner core. Here we provide experimental evidence to show that the ambiguous results obtained from earlier experiments are probably due to previously unrecognized experimental and analytical difficulties. The high-pressure, high-temperature data presented here show conclusively that potassium enters iron sulphide melts in a strongly temperature-dependent fashion and that (40)K can serve as a substantial heat source in the cores of the Earth and Mars.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号