首页 | 本学科首页   官方微博 | 高级检索  
     

基于概念格的神经网络日最大负荷预测输入参数选择
引用本文:任海军,张晓星,肖波,周湶. 基于概念格的神经网络日最大负荷预测输入参数选择[J]. 吉林大学学报(理学版), 2011, 49(1): 87-93
作者姓名:任海军  张晓星  肖波  周湶
作者单位:1. 重庆大学 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044;2. 重庆大学 软件工程学院, 重庆 400044,3. 重庆市电力公司 城区供电局, 重庆 400050
基金项目:国家重点基础研究发展计划973项目基金,中央高校基本科研业务费基金
摘    要:针对电力系统中影响负荷预测精度的众多因素如何选择问题,提出一种概念格属性约简算法,采用该算法挖掘出与待预测负荷量相关性较大的各属性作为神经网络预测模型的输入参数,降低了输入参数规模,确保了负荷预测模型输入参数的合理性,解决了神经网络模型输入参数的确定问题.通过对重庆市某区实际日最大负荷数据的计算分析,结果表明该算法提高...

关 键 词:神经网络  概念格  属性约简  负荷预测
收稿时间:2010-04-11

Input Parameters Selection in Neural Network Load Forecasting Mode Based on Concept Lattice
REN Hai-jun,ZHANG Xiao-xing,XIAO Bo,ZHOU Quan. Input Parameters Selection in Neural Network Load Forecasting Mode Based on Concept Lattice[J]. Journal of Jilin University: Sci Ed, 2011, 49(1): 87-93
Authors:REN Hai-jun  ZHANG Xiao-xing  XIAO Bo  ZHOU Quan
Affiliation:1. State Key Laboratory of Power Transmission Equipment &|System Security and New Technology, Chongqing University,Chongqing 400044, China|2. School of Software Engineering, Chongqing University, Chongqing 400044, China;3. Chengdu Power Supply Bureau, Chongqing Electric Power Company, Chongqing 400050, China
Abstract:There are many factors to affect the accuracy of load forecasting. The problem is how to choose the factors. To solve the problem, an attribute reduction algorithm of concept lattice was introduced. We chose a property parameter that has good relativity to forecasting load as the input parameter of the forecasting model of neural network. It reduces the scope of the inputparameters, ensures the rationality of input parameters of the forecasting model, and solves the problem how to determine the input parameters of the neural network model. The actual data of the maximum load in some place of Chongqing City was calculated. The results show the prediction accuracy of neural network model is improved with such a method, and reduction algorithm is reasonable and effective.
Keywords:neural network  concept lattice  attribute reduction  load forecasting  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号