首页 | 本学科首页   官方微博 | 高级检索  
     

符号空间中子位移的测度熵与维数
作者姓名:陈二才()  熊金城()
作者单位:[1]南京大学天文系 [2]华南师范大学数学系
摘    要:1 定义与结论随着分形几何和动力系统的深入发展,符号动力学已成为研究浑沌和分形的一个有力工具,进一步讨论符号空间的有关分形特征是有用的.本文将给出符号空间中子位移的测度熵与维数的关系,证明Bowen的维数公式在非Markov结构下成立,从而得到关于维数的不变原理.设E={1,…,N},其中N≥2,赋与E以离散拓扑,设积空间∑_N=∏_i~∞=_1E,称∑_N为 n个符号组成的符号空间,它是一个紧致的可度量化空间.设P=(P_1,P_2,…,P_N)满足0
关 键 词:符号空间 子位移 测度熵 维数 分形
收稿时间:1996-07-08
修稿时间:1997-01-17
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号