首页 | 本学科首页   官方微博 | 高级检索  
     

改进人工鱼群算法在认知无线电决策引擎中的应用
引用本文:张槟麒,谢红. 改进人工鱼群算法在认知无线电决策引擎中的应用[J]. 应用科技, 2013, 0(4): 31-34
作者姓名:张槟麒  谢红
作者单位:哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
摘    要:针对遗传算法、粒子群算法等应用于认知无线电决策引擎时存在收敛速度慢,容易陷入局部最优解的缺陷,提出了一种基于改进人工鱼群算法的认知无线电决策引擎.利用改进人工鱼群算法全局收敛性强、鲁棒性能好、初值敏感度低等特点,更快速、高效地优化调整传输参数,从而寻找特定条件下的最优配置方案.仿真结果表明,在多载波通信系统下,该认知决策引擎具有收敛精度高、平均适应度值高、稳定性强等特点,性能优于二进制量子粒子群认知引擎.

关 键 词:认识无线电决策引擎  人工鱼群算法  二进制量子粒子群算法  觅食行为  追尾行为

The applications of improved artificial fish swarm algorithm in cognitive radio decision engine
ZHANG Binqi,XIE Hong. The applications of improved artificial fish swarm algorithm in cognitive radio decision engine[J]. Applied Science and Technology, 2013, 0(4): 31-34
Authors:ZHANG Binqi  XIE Hong
Affiliation:College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:In considering the defects of slow convergence speed and easy to fall into local optima in the traditional algorithms such as genetic algorithm and particle swarm optimization algorithm, this paper proposed a cognitive radio decision engine based on improved artificial fish swarm algorithm (AFSA). The improved AFSA has the abilities of better global convergence and robust performance, low initial value sensitivity, and can adjust the transmission parameters more rapidly and efficiently, therefore finding the optimal allocation scheme under certain conditions. The simulation results show that in the multi-carrier communication system, with the characteristics of high accuracy of convergence, high average fitness value and strong stability, the performance of the cognitive radio decision engine with AFSA is significantly better than the advanced binary quantum particle swarm optimization (BQPSO) cognitive engine.
Keywords:cognitive radio decision engine  artificial fish swarm algorithm (AFSA)  binary quantum particle swarm optimization  (BQPSO)  foraging behavior  following behavior
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号