首页 | 本学科首页   官方微博 | 高级检索  
     

基于复变自适应神经网络的电网相位估计方法
引用本文:李云路,王大志,宁一,回楠木. 基于复变自适应神经网络的电网相位估计方法[J]. 东北大学学报(自然科学版), 2017, 38(1): 6-10. DOI: 10.12068/j.issn.1005-3026.2017.01.002
作者姓名:李云路  王大志  宁一  回楠木
作者单位:(东北大学 信息科学与工程学院, 辽宁 沈阳110819)
基金项目:国家自然科学基金重点资助项目(61433004); 国家自然科学基金资助项目(51467017).
摘    要:针对非理想电网电压下,不平衡电压、频率偏移引起的电网相位难以检测的问题,提出了一种在复变域下使用的基于自适应神经网络的电网相位估计方法.首先,对非理想电网电压进行建模,在得到神经网络模型的基础上,将复变最小均方算法的权值更新方法应用到神经网络权值更新过程中,利用神经网络权值实现对相位的估计.为了跟踪电网频率,设计了电网频率跟踪环节,并对收敛性进行了分析.仿真和实验的结果表明所提出的方法能够快速准确地对非理想电压下的电网相位进行估计.

关 键 词:相位估计  神经网络  不平衡电压  频率跟踪  电网相位  

Phase Estimation Method for Power System Based on Complex Adaptive Neural Network
LI Yun-lu,WANG Da-zhi,NING Yi,HUI Nan-mu. Phase Estimation Method for Power System Based on Complex Adaptive Neural Network[J]. Journal of Northeastern University(Natural Science), 2017, 38(1): 6-10. DOI: 10.12068/j.issn.1005-3026.2017.01.002
Authors:LI Yun-lu  WANG Da-zhi  NING Yi  HUI Nan-mu
Affiliation:School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
Abstract:Aiming at the difficulty of grid phase detection under non-ideal voltage caused by unbalanced voltage and frequency fluctuation, a phase estimation method was proposed for power system based on complex adaptive neural network. On the basis of neural network model of non-ideal grid voltage, the weight update method of complex least mean squares to the process of weight update procedure of neural network was introduced. Then the weights of neural network were used to calculate the phase. To trace the frequency of grid, a frequency tracing unit was designed and it was proved to be convergent. The simulation and experiment results demonstrate that the proposed method is able to estimate the phase rapidly and precisely under non-ideal voltage conditions.
Keywords:phase estimation  neural network  unbalanced voltage  frequency tracing  grid phase  
本文献已被 CNKI 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号