首页 | 本学科首页   官方微博 | 高级检索  
     

基于垂直格式的频繁项集挖掘分段算法
作者姓名:王红梅  胡明  赵守峰
作者单位:长春工业大学 计算机科学与工程学院, 长春 130012
摘    要:针对Eclat算法连接和剪枝操作耗时的缺点,按照项集之间的可连接性,将数据集划分为等价类并分段存储,采用末项剪枝策略,在常量时间内完成连接和剪枝操作.针对Eclat算法求长集合的交集操作需要大量计算的缺点,采用多维数组分段存储项集的事务集,将长集合的求交集操作转换为分段求短集合的交集,并提出期望支持度的概念,在求交集的过程中预测支持度,从而减少求交集的比较次数.实验结果表明,该算法在时间性能方面优于Eclat算法,尤其适用于挖掘长模式稀疏数据集.

关 键 词:频繁项集  垂直格式  分段存储  期望支持度  
收稿时间:2015-04-30
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号