首页 | 本学科首页   官方微博 | 高级检索  
     

三元混合有理插值
引用本文:赵前进,梁锡坤. 三元混合有理插值[J]. 合肥工业大学学报(自然科学版), 2001, 24(2): 277-281
作者姓名:赵前进  梁锡坤
作者单位:合肥工业大学理学院,
摘    要:在一元、二元情形中 ,差商和偏逆差商分别在构造线性和非线性插值中扮演重要角色。值得注意的是 Newton插值多项式和 Thiele-型插值分叉连分式能用类似于张量积的方法结合在一起去产生一种三元插值方法。文章主要研究三元混合有理插值。通过引入所谓的混合偏差商 ,给出一个递推算法及一个数值例子 ,进一步给出了其特征定理和误差估计

关 键 词:差商  偏逆差商  混合偏差商  三元混合有理插值
文章编号:1003-5060(2001)02-0277-05
修稿时间:2000-08-09

Triple blending rational interpolants
ZHAO Qian-jin,LIANG Xi-kun. Triple blending rational interpolants[J]. Journal of Hefei University of Technology(Natural Science), 2001, 24(2): 277-281
Authors:ZHAO Qian-jin  LIANG Xi-kun
Abstract:In the univariate and bivariate cases, divided differences and partial inverted differences play important roles in constructing linear and nonlinear interpolants respectively. It is interesting to notice that Newton's interpolation polynomials and Thiele-type interpolating branched continued fractions can be incorporated in tensor-product-like manner to yield a kind of triple interpolation scheme. In this paper, emphasis is put on the study of triple blending rational interpolants. By introducing the so-called blending partial differences,a recursive algorithm is given as well as a numerical example. The characteristic theorem and an error estimation are also presented.
Keywords:divided differences  partial inverted differences  blending partial differences  triple blending rational interpolants
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号