首页 | 本学科首页   官方微博 | 高级检索  
     

科技项目评审专家分组匹配算法
引用本文:毛晚堆,谷千军,褚蓓蓓,瞿有利. 科技项目评审专家分组匹配算法[J]. 北京理工大学学报, 2014, 34(5): 523-527
作者姓名:毛晚堆  谷千军  褚蓓蓓  瞿有利
作者单位:石家庄铁道大学工程训练中心,河北,石家庄050043;北京理工大学国有资产管理处,北京100081;北京交通大学计算机与信息技术学院,北京 100044
基金项目:国家自然科学基金资助项目(11172182);河北省石家庄市科技支撑资助项目(12113541A)
摘    要:为了解决科技项目评审中申请书与专家的分组匹配问题,提出了一个基于二部图谱划分异构对象分组匹配算法。 该算法用二部图描述申请书与专家之间的对应关系,提出了关联强度计算公式,计算图中每条边的权重值,求出图的关联矩阵,对关联矩阵进行奇异值分解得到奇异特征向量,用k-means分组算法对奇异特征向量进行分组。 利用申请书与专家分组匹配算法能够实现项目评审过程中申请书与专家的自动分组与匹配,并且分组匹配结果有较高的准确性和合理性。 

关 键 词:分组匹配  二部图  图切分  谱聚类
收稿时间:2013-06-05

Expert Grouping and Matching Algorithm in Science and Technology Project Review
MAO Wan-dui,GU Qian-jun,CHU Bei-bei and QU You-li. Expert Grouping and Matching Algorithm in Science and Technology Project Review[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2014, 34(5): 523-527
Authors:MAO Wan-dui  GU Qian-jun  CHU Bei-bei  QU You-li
Affiliation:1.Engineering Training Center, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China2.Office of State Assets, Beijing Institute of Technology, Beijing 100081, China3.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract:In order to group and match the applications and experts in project reviewing, the heterogeneous objects grouping and matching algorithm has been proposed, which was based on the co-clustering using bipartite spectral graph partitioning. In this algorithm, the relationship between experts and applications were depicted as a bipartite graph model. The edge-weight was calculated by the relationship weight calculating formula which was proposed in this paper. After decomposing the matrix which was formed by the edge-weight, eigenvectors were gotten. At last, experts and applications were grouped and matched through mapping to the groups of the eigenvectors which were created by k-means grouping algorithm. Applications and experts grouping and matching automatically in the process of project evaluation can be achieved by the applications and experts grouping and matching algorithm, and the grouping and matching results have a higher accuracy and rationality.
Keywords:grouping and matching  bipartite graph  graph partitioning  spectral clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号