首页 | 本学科首页   官方微博 | 高级检索  
     

基于三维脉冲耦合神经网络模型的医学图像分割
引用本文:施俊,常谦,钟瑾. 基于三维脉冲耦合神经网络模型的医学图像分割[J]. 应用科学学报, 2010, 28(6): 609-615. DOI: 10.3969/j.issn.0255-8297.2010.06.009
作者姓名:施俊  常谦  钟瑾
作者单位:上海大学通信与信息工程学院,上海200072
基金项目:国家自然科学基金,上海市教育委员会科研创新项目基金,上海市教委重点学科建设项目基金
摘    要:该文将脉冲耦合神经网络模型从二维平面扩展到三维空间,同时提出一种新的乘积型互信息算法,将其作为脉冲耦合神经网络分割算法的最优分割准则,并将两者结合实现三维医学图像的整体自动分割. 利用该文提出的算法对三维CT肺部图像进行分割实验,结果表明,该算法在保证分割精度的基础上显著地减少了分割运行时间,提高了分割效率,具有应用于医学图像分割的潜在价值.

关 键 词:脉冲耦合神经网络  图像分割  乘积型互信息  三维图像  运算量  
收稿时间:2010-06-09
修稿时间:2010-09-27

Segmentation of Medical Images Based on Three Dimensional Pulse Coupled Neural Network Model
SHI Jun,CHANG Qian,ZHONG Jin. Segmentation of Medical Images Based on Three Dimensional Pulse Coupled Neural Network Model[J]. Journal of Applied Sciences, 2010, 28(6): 609-615. DOI: 10.3969/j.issn.0255-8297.2010.06.009
Authors:SHI Jun  CHANG Qian  ZHONG Jin
Affiliation:School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China
Abstract:In this study, the 2D pulse coupled neural network (PCNN) model is extended to the 3D space, and a new rule for optimal image segmentation, named product mutual information (PMI), is proposed. Based on the 3D PCNN and PMI, an automatic segmentation algorithm is developed for 3D medical image segmentation. Three-dimensional CT lung images are segmented with the proposed method, showing reduced execution time and improved computation efficiency with high segmentation accuracy. The method is potentially useful formedical image segmentation.
Keywords:pulse coupled neural network  image segmentation   product mutual information  three dimensional  image   computation complexity  
本文献已被 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号