首页 | 本学科首页   官方微博 | 高级检索  
     

基于解释的人工神经网络集成学习方法
引用本文:陆玉昌,吴锐. 基于解释的人工神经网络集成学习方法[J]. 清华大学学报(自然科学版), 1995, 0(5)
作者姓名:陆玉昌  吴锐
作者单位:清华大学计算机科学与技术系
摘    要:基于知识的人工神经网络是集成学习方法领域中最主要的研究方向,它利用领域知识决定神经网络的初始拓扑结构和联接权值的设置。一方面利用领域知识加速了网络的学习,另一方面利用神经网络的鲁棒性减少了领域理论不完善和数据噪声的影响,从而较好的解决了不完善领域理论的学习问题。本文对这方面的几个主要系统KBANN、RAPTURE进行了分析和评价,指出了它们在网络拓扑结构的动态改变、深层网络的加速学习和结果网络到规则的转译等方面的弱点,并因此提出了一种有效的集成学习方法——基于解释的人工神经网络。

关 键 词:集成学习方法,人工神经网络,解释学习

Explanation-based artificial neural network integrated learning approach
Lu Yuchang, Wu Rui. Explanation-based artificial neural network integrated learning approach[J]. Journal of Tsinghua University(Science and Technology), 1995, 0(5)
Authors:Lu Yuchang   Wu Rui
Abstract:nowledge--based artificial neural network is the main topic in the area of integrated learning method research. It integrates existing knowledge into neural networks by defining the network topology and setting initial link weights. It accelerates network learning by using domain theory. Because of the robust of neural network it minimizes the errors that arise when using imperfect domain theories. This article analyzes and evaluates some systems such as KBANN and RAPTRUE. It also points out some defects such as changing the network architecture, learning of deep network, translating from the network result to rules, and presents a new integrated learning method named EBANN which can overcome the difficulties metioned above.
Keywords:integrated learing method  artificial neural network  explanation-based machine learning
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号